Skip to main content

Regulation of the Hedgehog Morphogene Gradient

  • Chapter
  • First Online:
  • 492 Accesses

Abstract

The development of a multicellular organism is controlled by a genetic program that manifests itself in proliferation, cell differentiation, and apoptosis, leading to the formation of functional organs. A small number of secreted molecules work as “instructors” during these processes [1, 2]. Among them are the Hedgehog (Hh) family of proteins, which act from their source of production at short and long range. They trigger cell fate decisions by inducing a signaling cascade in the ligand-receiving tissues of invertebrates and vertebrates. Dramatic developmental abnormalities are observed in human embryos with compromised Hh signaling, and while great effort is being made to understand and manipulate the signaling cascade downstream of Hh receptor activation, less attention has been payed to the secretion and release of the Hh ligand itself. In this review, we will discuss recent progresses in the understanding of Hh ligand packaging and dispatch from producing cells and its consequences for gradient formation.

The first two authors contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472

    Article  PubMed  CAS  Google Scholar 

  2. Ashe HL, Briscoe J (2006) The interpretation of morphogen gradients. Development 133:385–394

    Article  PubMed  CAS  Google Scholar 

  3. Mann RK, Beachy PA (2004) Novel lipid modifications of secreted protein signals. Annu Rev Biochem 73:891–923

    Article  PubMed  CAS  Google Scholar 

  4. Pepinsky RB et al (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273:14037–14045

    Article  PubMed  CAS  Google Scholar 

  5. Chamoun Z et al (2001) Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science 293:2080–2084

    Article  PubMed  CAS  Google Scholar 

  6. Micchelli CA, The I, Selva E, Mogila V, Perrimon N (2002) Rasp, a putative transmembrane acyltransferase, is required for Hedgehog signaling. Development 129:843–851

    PubMed  CAS  Google Scholar 

  7. Amanai K, Jiang J (2001) Distinct roles of Central missing and Dispatched in sending the Hedgehog signal. Development 128:5119–5127

    PubMed  CAS  Google Scholar 

  8. Lee JD, Treisman JE (2001) Sightless has homology to transmembrane acyltransferases and is required to generate active Hedgehog protein. Curr Biol 11:1147–1152

    Article  PubMed  CAS  Google Scholar 

  9. Hofmann K (2000) A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci 25:111–112

    Article  PubMed  CAS  Google Scholar 

  10. Maity T, Fuse N, Beachy PA (2005) Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly. Proc Natl Acad Sci USA 102:17026–17031

    Article  PubMed  CAS  Google Scholar 

  11. Gallet A, Rodriguez R, Ruel L, Therond PP (2003) Cholesterol modification of hedgehog is required for trafficking and movement, revealing an asymmetric cellular response to hedgehog. Dev Cell 4:191–204

    Article  PubMed  CAS  Google Scholar 

  12. Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 101:4083–4088

    Article  PubMed  CAS  Google Scholar 

  13. Chen MH, Li YJ, Kawakami T, Xu SM, Chuang PT (2004) Palmitoylation is required for the production of a soluble multimeric Hedgehog protein complex and long-range signaling in vertebrates. Genes Dev 18:641–659

    Article  PubMed  CAS  Google Scholar 

  14. Abe Y, Kita Y, Niikura T (2008) Mammalian Gup1, a homolog of Saccharomyces cerevisiae glycerol uptake/transporter 1, acts as a negative regulator for N-terminal palmitoylation of Sonic hedgehog. FEBS J 275:318–331

    Article  PubMed  CAS  Google Scholar 

  15. Miura GI, Treisman JE (2006) Lipid modification of secreted signaling proteins. Cell Cycle 5:1184–1188

    Article  PubMed  CAS  Google Scholar 

  16. Buglino JA, Resh MD (2008) Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem 283:22076–22088

    Article  PubMed  CAS  Google Scholar 

  17. Takada R et al (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11:791–801

    Article  PubMed  CAS  Google Scholar 

  18. Taylor FR et al (2001) Enhanced potency of human Sonic hedgehog by hydrophobic modification. Biochemistry 40:4359–4371

    Article  PubMed  CAS  Google Scholar 

  19. Peters C, Wolf A, Wagner M, Kuhlmann J, Waldmann H (2004) The cholesterol membrane anchor of the Hedgehog protein confers stable membrane association to lipid-modified proteins. Proc Natl Acad Sci USA 101:8531–8536

    Article  PubMed  CAS  Google Scholar 

  20. Rietveld A, Neutz S, Simons K, Eaton S (1999) Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 274:12049–12054

    Article  PubMed  CAS  Google Scholar 

  21. Vyas N et al (2008) Nanoscale organization of hedgehog is essential for long-range signaling. Cell 133:1214–1227

    Article  PubMed  CAS  Google Scholar 

  22. Katanaev VL et al (2008) Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila. EMBO J 27:509–521

    Article  PubMed  CAS  Google Scholar 

  23. Langhorst MF, Reuter A, Stuermer CA (2005) Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci 62:2228–2240

    Article  PubMed  CAS  Google Scholar 

  24. Burke R et al (1999) Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99:803–815

    Article  PubMed  CAS  Google Scholar 

  25. Tian H, Jeong J, Harfe BD, Tabin CJ, McMahon AP (2005) Mouse Disp1 is required in sonic hedgehog-expressing cells for paracrine activity of the cholesterol-modified ligand. Development 132:133–142

    Article  PubMed  CAS  Google Scholar 

  26. Caspary T et al (2002) Mouse Dispatched homolog1 is required for long-range, but not juxtacrine Hh signaling. Curr Biol 12:1628–1632

    Article  PubMed  CAS  Google Scholar 

  27. Ma Y et al (2002) Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111:63–75

    Article  PubMed  CAS  Google Scholar 

  28. Yakushi T, Masuda K, Narita S, Matsuyama S, Tokuda H (2000) A new ABC transporter mediating the detachment of lipid-modified proteins from membranes. Nat Cell Biol 2:212–218

    Article  PubMed  CAS  Google Scholar 

  29. Kuwabara PE, Labouesse M (2002) The sterol-sensing domain: multiple families, a unique role? Trends Genet 18:193–201

    Article  PubMed  CAS  Google Scholar 

  30. Ohgami N et al (2004) Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proc Natl Acad Sci USA 101:12473–12478

    Article  PubMed  CAS  Google Scholar 

  31. Panakova D, Sprong H, Marois E, Thiele C, Eaton S (2005) Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435:58–65

    Article  PubMed  CAS  Google Scholar 

  32. Gallet A, Ruel L, Staccini-Lavenant L, Therond PP (2006) Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia. Development 133:407–418

    Article  PubMed  CAS  Google Scholar 

  33. Vincent JP, Dubois L (2002) Morphogen transport along epithelia, an integrated trafficking problem. Dev Cell 3:615–623

    Article  PubMed  CAS  Google Scholar 

  34. Han C, Belenkaya TY, Wang B, Lin X (2004) Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process. Development 131:601–611

    Article  PubMed  CAS  Google Scholar 

  35. Torroja C, Gorfinkiel N, Guerrero I (2004) Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development 131:2395–2408

    Article  PubMed  CAS  Google Scholar 

  36. Gallet A, Therond PP (2005) Temporal modulation of the Hedgehog morphogen gradient by a patched-dependent targeting to lysosomal compartment. Dev Biol 277:51–62

    Article  PubMed  CAS  Google Scholar 

  37. Bulow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407

    Article  PubMed  CAS  Google Scholar 

  38. Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131:1927–1938

    Article  PubMed  CAS  Google Scholar 

  39. Eugster C, Panakova D, Mahmoud A, Eaton S (2007) Lipoprotein-heparan sulfate interactions in the Hh pathway. Dev Cell 13:57–71

    Article  PubMed  CAS  Google Scholar 

  40. Capurro MI et al (2008) Glypican-3 inhibits Hedgehog signaling during development by competing with patched for Hedgehog binding. Dev Cell 14:700–711

    Article  PubMed  CAS  Google Scholar 

  41. Bellaiche Y, The I, Perrimon N (1998) Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394:85–88

    Article  PubMed  CAS  Google Scholar 

  42. The I, Bellaiche Y, Perrimon N (1999) Hedgehog movement is regulated through tout velu-dependent synthesis of a heparan sulfate proteoglycan. Mol Cell 4:633–639

    Article  PubMed  CAS  Google Scholar 

  43. Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T (2004) Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73–82

    Article  PubMed  CAS  Google Scholar 

  44. Han C et al (2004) Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131:1563–1575

    Article  PubMed  CAS  Google Scholar 

  45. Ayers KL, Gallet A, Staccini-Lavenant L, Therond PP (2010) The long-range activity of Hedgehog is regulated in the apical extracellular space by the glypican Dally and the hydrolase Notum. Dev Cell 18:605–620

    Article  PubMed  CAS  Google Scholar 

  46. Takeo S, Akiyama T, Firkus C, Aigaki T, Nakato H (2005) Expression of a secreted form of Dally, a Drosophila glypican, induces overgrowth phenotype by affecting action range of Hedgehog. Dev Biol 284:204–218

    Article  PubMed  CAS  Google Scholar 

  47. Giraldez AJ, Copley RR, Cohen SM (2002) HSPG modification by the secreted enzyme Notum shapes the Wingless morphogen gradient. Dev Cell 2:667–676

    Article  PubMed  CAS  Google Scholar 

  48. Han C, Yan D, Belenkaya TY, Lin X (2005) Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc. Development 132:667–679

    Article  PubMed  CAS  Google Scholar 

  49. Traister A, Shi W, Filmus J (2008) Mammalian Notum induces the release of glypicans and other GPI-anchored proteins from the cell surface. Biochem J 410:503–511

    Google Scholar 

  50. Dierker T, Dreier R, Migone M, Hamer S, Grobe K (2009) Heparan sulfate and transglutaminase activity are required for the formation of covalently cross-linked hedgehog oligomers. J Biol Chem 284:32562–32571

    Article  PubMed  CAS  Google Scholar 

  51. Etheridge LA, Crawford TQ, Zhang S, Roelink H (2010) Evidence for a role of vertebrate Disp1 in long-range Shh signaling. Development 137:133–140

    Article  PubMed  CAS  Google Scholar 

  52. Chan JA et al (2009) Proteoglycan interactions with Sonic Hedgehog specify mitogenic responses. Nat Neurosci 12:409–417

    Article  PubMed  CAS  Google Scholar 

  53. Song HH, Shi W, Xiang YY, Filmus J (2005) The loss of glypican-3 induces alterations in Wnt signaling. J Biol Chem 280:2116–2125

    Article  PubMed  CAS  Google Scholar 

  54. Capurro MI, Li F, Filmus J (2009) Overgrowth of a mouse model of Simpson-Golabi-Behmel syndrome is partly mediated by Indian hedgehog. EMBO Rep 10:901–907

    Article  PubMed  CAS  Google Scholar 

  55. Glise B et al (2005) Shifted, the Drosophila ortholog of Wnt inhibitory factor-1, controls the distribution and movement of Hedgehog. Dev Cell 8:255–266

    Article  PubMed  CAS  Google Scholar 

  56. Gorfinkiel N, Sierra J, Callejo A, Ibanez C, Guerrero I (2005) The Drosophila ortholog of the human Wnt inhibitor factor Shifted controls the diffusion of lipid-modified Hedgehog. Dev Cell 8:241–253

    Article  PubMed  CAS  Google Scholar 

  57. Woods IG, Talbot WS (2005) The you gene encodes an EGF-CUB protein essential for Hedgehog signaling in zebrafish. PLoS Biol 3:e66

    Article  PubMed  Google Scholar 

  58. Kawakami A et al (2005) The zebrafish-secreted matrix protein you/scube2 is implicated in long-range regulation of hedgehog signaling. Curr Biol 15:480–488

    Article  PubMed  CAS  Google Scholar 

  59. Eaton S (2006) Release and trafficking of lipid-linked morphogens. Curr Opin Genet Dev 16:17–22

    Article  PubMed  CAS  Google Scholar 

  60. Zeng X et al (2001) A freely diffusible form of Sonic hedgehog mediates long-range signalling. Nature 411:716–720

    Article  PubMed  CAS  Google Scholar 

  61. Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M (2006) The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J Cell Biol 173:949–961

    Article  PubMed  CAS  Google Scholar 

  62. Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435:172–177

    Article  PubMed  CAS  Google Scholar 

  63. Incardona JP et al (2000) Receptor-mediated endocytosis of soluble and membrane-tethered Sonic hedgehog by Patched-1. Proc Natl Acad Sci USA 97:12044–12049

    Article  PubMed  CAS  Google Scholar 

  64. Ramirez-Weber FA, Kornberg TB (1999) Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607

    Article  PubMed  CAS  Google Scholar 

  65. Hsiung F, Ramirez-Weber FA, Iwaki DD, Kornberg TB (2005) Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature 437:560–563

    Article  PubMed  CAS  Google Scholar 

  66. Yauch RL et al (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455:406–410

    Article  PubMed  CAS  Google Scholar 

  67. Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087

    Article  PubMed  CAS  Google Scholar 

  68. Karhadkar SS et al (2004) Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431:707–712

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Thérond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

D’Angelo, G., Wendler, F., Ayers, K., Thérond, P.P. (2011). Regulation of the Hedgehog Morphogene Gradient. In: Xie, J. (eds) Hedgehog signaling activation in human cancer and its clinical implications. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8435-7_2

Download citation

Publish with us

Policies and ethics