Skip to main content

Abstract

Computational theories of classical conditioning are theories whose propositions are stated as mathematical relationships. From such propositions one can compute, that is to say, deduce, presumed consequences for conditioned responding in circumstances addressed by the theory. This chapter is an attempt to roughly categorize and briefly summarize the major computational theories that have been developed to understand behavior in classical conditioning. It is organized around the essential ideas about conditioning that the various theories embrace. This chapter is not intended to provide a relative evaluation of the theories mentioned; to do so is considerably beyond the scope of what can be accomplished in the space available. Data are mentioned and judgments made, but only to provide understanding of the inspiration for the different models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, E.D. (1928). The basis of sensation. New York: Norton.

    Google Scholar 

  • Allan, L.G. (1993). Human contingency judgements: rule based or associative? Psychological Bulletin, 114, 435–448.

    PubMed  CAS  Google Scholar 

  • Amsel, A. (1958). The role of frustrative nonreward in noncontinuous reward situations. Psychological Bulletin, 55, 102–119.

    PubMed  CAS  Google Scholar 

  • Anderson, J.A., Silverman, J.W., Ritz, S.W., and Jones, R.S. (1977). probability learning: some applications of a neural model. Psychological Review, 85, 413–451.

    Google Scholar 

  • Anderson, J.R. (1985). Cognitive psychology and its implications (2nd ed.). New York: Freeman.

    Google Scholar 

  • Anderson, J., and Bower, G. (1973). Human associative memory. New York: Winston.

    Google Scholar 

  • Atkinson, R.C., and Estes, W.K. (1963). Stimulus sampling theory. In R.D. Luce, R.R. Bush, and E. Galanter (Eds.), Handbook of mathematical psychology (pp. 121–268). New York: Wiley.

    Google Scholar 

  • Bahçekapili, H.G. (1997). An evaluation of Rescorla & Wagner’s elementistic model versus Pearce’ s configurai model in discrimination learning. Unpublished doctoral dissertation. New Haven, CT: Yale University.

    Google Scholar 

  • Barto, A.G., and Sutton, R.S. (1982). Simulation of anticipatory responses in classical conditioning by a neuron-like adaptive element. Behavioural Brain Research, 4, 221–235.

    PubMed  CAS  Google Scholar 

  • Barto, A.G., Anderson, C.W., and Sutton, R.S. (1982). Synthesis of nonlinear control surfaces by a layered associative search network. Biological Cybernetics, 43, 175–185.

    PubMed  CAS  Google Scholar 

  • Bellingham, M., Gillette Bellingham, K., and Kehoe, E.J. (1985). Summation and configuration in patterning schedules in the rat and rabbit. Animal Learning & behavior, 13, 152–164.

    Google Scholar 

  • Best, M.R., and Gemberling, G.A. (1977). The role of short-term processes in the CS preexposure effect and the delay of reinofrcement gradient in long-delay taste-aversion learning. Journal of Experimental Psychology: Animal Behavior Processes, 3, 253–263.

    Google Scholar 

  • Bitterman, M.E. (1964). The CS-US interval in classical and avoidance conditioning. In W.F. Prokasy (Ed.), Classical conditioning (pp. 1–19). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Blanchard, R.J., and Blanchard, D.C. (1969). Crouching as an index of fear. Journal of Comparative and Physiological Psychology, 67, 370–375.

    PubMed  CAS  Google Scholar 

  • Blough, D.S. (1975). Steady state data and a quantitative model of operant generalization and discrimination. Journal of Experimental Psychology: Animal Behavior Processes, 1, 3–21.

    Google Scholar 

  • Bolles, R.C., and Collier, A.C. (1976). The effect of predictive cues on freezing in rats. Animal Learning & behavior, 4, 6–8.

    Google Scholar 

  • Bolles, R.C., and Riley, A.L. (1973). Freezing as an avoidance response: another look at the operant-respondent distinction. Learning & Motivation, 4, 268–275.

    Google Scholar 

  • Boneau, C.A. (1958). The interstimulus interval and the latency of the conditioned eyelid response. Journal of Experimental Psychology, 56, 464–471.

    PubMed  CAS  Google Scholar 

  • Boyd, T.L., and Lewis, D.J. (1976). The effects of single-component extinction of a three component serial CS on resistance to extinction of the conditioned avoidance response. Learning and Motivation, 7, 517-531.

    Google Scholar 

  • Brandon, S.E., and Wagner, A.R. (1991). Modulation of a discrete Pavlovian conditioning reflex by a putative emotive Pavlovian conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 17, 299–311.

    PubMed  CAS  Google Scholar 

  • Brandon, S.E., and Wagner, A.R. (1998). Occasion setting: influences of conditioned emotional responses and configurai cues. In N. Schmajuk (Ed.), Occasion setting: associative learning and cognition in animals (pp. 343–382). Washington, DC: American Psychological Association.

    Google Scholar 

  • Brandon, S.E., Myers, K., Vogel, E.H., and Wagner, A.R. (2000a). “Multiple peaked rabbit eyelid conditioned responses following training with a single CS-US interval.” Poster presented at the meetings of the Eastern Psychological Assoc, Baltimore, MD.

    Google Scholar 

  • Brandon, S.E., Vogel, E.H., and Wagner, A.R. (2000b). A componential view of configured cues in generalization and discrimination in Pavlovian conditioning. Behavioral Brain Research, 110, 67–72.

    CAS  Google Scholar 

  • Bush, R.R., and Mosteller, F. (1951). A mathematical model for simple learning. Psychological Review, 58, 313–323.

    PubMed  CAS  Google Scholar 

  • Bush, R.R., and Mosteller, F. (1955). Stochastic models for learning. New York: Wiley.

    Google Scholar 

  • Champion, R.A., and Jones, J.E. (1961). pseudo-conditioning of the GSR. Journal of Experimental Psychology, 62, 58–61.

    PubMed  CAS  Google Scholar 

  • Chiang, C.-Y. (1993). A generalization of the Rescorla-Wagner model of conditioning and learning. British Journal of Mathematical & Statistical Psychology, 46, 207–212.

    Google Scholar 

  • Coleman, S.R., and Gormezano, I. (1971). Classical conditioning of the rabbit’s (Oryctolagus cuniculus) nictitating membrane response under symmetrical CS-US interval shifts. Journal of Comparative & Physiological Psychology, 77, 447–455.

    CAS  Google Scholar 

  • Daly, H.B., and Daly, J.T. (1982). A mathematical model of reward and aversive non-reward: its application in over 30 appetitive learning situations. Journal of Experimental Psychology: General, 111, 441–480.

    Google Scholar 

  • Davis, M. (1970). Interstimulus interval and startle response habituation with a “control” for total time during training. Psychonomic Science, 20, 39–41.

    Google Scholar 

  • Denny, M.R. (1971). Relaxation theory and experiments. In F.R. Brush (Ed.), Aversive conditioning and learning (pp. 235–295). New York: Academic Press.

    Google Scholar 

  • Desmond, J.E. (1990). Temporally adaptive responses in neural models: The stimulus trace. In M. Gabriel and J. Moore (Eds.), Learning and computational neuroscience: foundations of adaptive networks, (pp. 421–456). Cambridge, MA: MIT Press.

    Google Scholar 

  • Desmond, J.E., and Moore, J.W. (1988). Adaptive timing in neural networks: the conditioned response. Biological Cybernetics, 58, 405–415.

    PubMed  CAS  Google Scholar 

  • Desmond, J.E., Blazis, D.E., Moore, J.W., and Berthier, N.E. (1986). Computer simulations of a classically conditioned response using neuron-like adaptive elements: response topography. Society for Neuroscience Abstracts, 12, 516.

    Google Scholar 

  • Donegan, N.H. (1981). Priming-produced facilitation or diminution of responding to a Pavlovian unconditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 7, 295–312.

    PubMed  CAS  Google Scholar 

  • Donegan, N.H., and Wagner, A.R. (1987). Conditioned diminution and facilitation of the UR: a sometimes opponent-process interpretation. In I. Gormezano, W.F. Proaksy, and R.F. Thompson (Eds.), Classical conditioning (pp. 339–369). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Dubin, W.J., and Lewis, D.J. (1973). Influence of similarity of components of a serial conditioned stimulus on conditioned fear in rats. Journal of Comparative and Physiological Psychology, 85, 304–312.

    PubMed  CAS  Google Scholar 

  • Ebel, H.C., and Prokasy, W.F. (1963). Classical eyelid conditioning as a function of sustained and shifted interstimulus intervals. Journal of Experimental Psychology, 65, 52–58.

    Google Scholar 

  • Egger, M.D., and Miller, N.E. (1962). Secondary reinforcement in rats as a function of information value and reliability of the stimulus. Journal of Experimental Psychology, 64, 97–104.

    PubMed  CAS  Google Scholar 

  • Estes, W.K. (1950). Toward a statistical theory of learning. Psychological Review, 57, 94–104.

    Google Scholar 

  • Estes, W.K. (1959a). Component and pattern models with Markovian interpretations. In W.K. Estes and R.R. Bush (Eds.), Studies of mathematical learning theory (pp. 9–52). Palo Alto, CA: Stanford University Press.

    Google Scholar 

  • Estes, W.K. (1959b). The statistical approach to learning theory. In S. Koch (Ed.), Psychology: a study of a science, Vol. 2 (pp. 380–491). New York: McGraw-Hill.

    Google Scholar 

  • Estes, W.K. (1969). Outline of a theory of punishment. In B.A. Campbell and R.W. Church (Eds.), Punishment and aversive behavior (pp. 57–82). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Estes, W.K., and Hopkins, B.L. (1961). Acquisition and transfer in pattern versus component discrimination learning. Journal of Experimental Psychology, 61, 322–328.

    PubMed  CAS  Google Scholar 

  • Fowler, H., Kleiman, M.C., and Lysle, D.T. (1985). Factors affecting the acquisition and extinction of conditioned inhibition suggest a “slave” process. In R.R. Miller and N.E. Spear (Eds.), Information processing in animals: conditioned inhibition (pp. 113–150). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Frey, P.W., and Ross, L.E. (1968). Classical conditioning of the rabbit eyelid response as a function of interstimulus interval. Journal of Comparative and Physiological Psychology, 65, 246–250.

    PubMed  CAS  Google Scholar 

  • Frey, P.W., and Sears, R.J. (1978). a catastrophe rule. Psychological Bulletin, 85, 321–340.

    Google Scholar 

  • Gaioni, S.J. (1982). Blocking and nonsimultaneous compounds: comparisons of responding during compound conditioning and testing. Pavlovian Journal of Biological Sciences, 17, 16–29.

    CAS  Google Scholar 

  • Gardner, H. (1985). The mind’s new science. New York: Basic Books.

    Google Scholar 

  • Gewirtz, J.C., Brandon, S.E., and Wagner, A.R. (1998). Modulation of the acquisition of the rabbit eyeblink conditioned response by conditioned contextual stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 24, 106–117.

    PubMed  CAS  Google Scholar 

  • Gluck, M.A. (1992). Stimulus sampling and distributed representations in adaptive network theories of learning. In A.F. Healy, S.M. Kosslyn, and R.M. Shiffrin (Eds.), From learning theory to connectionist theory, Vol. 1 (pp. 169–199). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Gluck, M.A., and Bower, G.H. (1988) From conditioning to category learning: an adaptive network model. Journal of Experimental Psychology, 117, 227–247.

    PubMed  CAS  Google Scholar 

  • Gluck, M.A., Reifsnider, E.S., and Thompson, R.F. (1990). Adaptive signal processing and the cerebellum: models of classical conditioning and VOR adaptation. In M.A. Gluck and D.E. Rumelhart (Eds.), Neuroscience and connectionist theory (pp. 131–185). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Gormezano, I. (1972). Investigations of defense and reward conditioning in the rabbit. In A.H. Black and W.F. Prokasy (Eds.), Classical conditioning. II (pp. 151–181). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Gormezano, I., and Kehoe, E.J. (1981). Classical conditioning and the law of contiguity. In P. Harzern and M.D. Zeiler (Eds.), Advances in analysis of behaviour, Vol. 2. Predictability, correlation, and contiguity (pp. 1–45). New York: Wiley.

    Google Scholar 

  • Gormezano, I., Kehoe, E.J., and Marshall, B.S. (1983). Twenty years of classical conditioning research with the rabbit. Progress in Psychobiology & Physiological Psychology, 10, 197–277.

    Google Scholar 

  • Grossberg, S. (1968). Some physiological and biochemical consequences of psychological postulates. Proceedings of the National Academy of Sciences of the United States of America, 60, 758–765.

    PubMed  CAS  Google Scholar 

  • Grossberg, S. (1969). reproduce any number of complicated space-time patterns, I. Journal of Mathematics and Mechanics, 19, 53–91.

    Google Scholar 

  • Grossberg, S. (1970). Neural pattern discrimination. Journal of Theoretical Biology, 27, 291–337.

    PubMed  CAS  Google Scholar 

  • Grossberg, S. (1975). A neural model of attention, reinforcement and discrimination learning. International Review of Neurobiology, 18, 263–327.

    PubMed  CAS  Google Scholar 

  • Grossberg, S. (1976). Adaptive pattern classification and university recording: 1. Parallel development and coding of neural feature detectors. Biological Cybernetics, 23, 121–134.

    PubMed  CAS  Google Scholar 

  • Grossberg, S. (1982). Studies of mind and brain. Dordrecht: Reidel.

    Google Scholar 

  • Grossberg, S. (1991). A neural network architecture for Pavlovian conditioning: reinforcement, attention, forgetting, timing. In M.L. Commons, S. Grossberg, and J.E.R. Staddon (Eds.), Neural network models of conditioning and action (pp. 149–180). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Grossberg, S., and Levine, D.S. (1987). secondary reinforcement. Applied Optics, 26, 5015–5030.

    PubMed  CAS  Google Scholar 

  • Grossberg, S., and Schmajuk, N.A. (1987). opponent processing. Psychobiology, 15, 195–240.

    Google Scholar 

  • Grossberg, S., and Schmajuk, N.A. (1989). Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Networks, 2, 79–102.

    Google Scholar 

  • Gulliksen, H., and Wolfle, D.L. (1938). A theory of learning and transfer. I. Psychometrika, 3, 127–149.

    Google Scholar 

  • Hearst, E., and Franklin, S.R. (1977). Positive and negative relations between a signal and food: approach-withdrawal behavior. Journal of Experimental Psychology: Animal Behavior Processes, 3, 37–52.

    Google Scholar 

  • Hilgard, E.R., and Marquis, D.G. (1940). Conditioning and learning. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Hoehler, F.K., and Leonard, D.W. (1976). Double responding in classical nictitating membrane conditioning with singl-CS, dual-ISI pairing. Pavlovian Journal of Biological Science, 11, 180–190.

    PubMed  CAS  Google Scholar 

  • Holland, P.C. (1983). Occasion-setting in Pavlovian feature positive discriminations. In M.L. Commons, R.J. Herrnstein, and A.R. Wagner (Eds.), Quantitative analyses of behavior: discrimination processes, Vol. 4 (pp. 182–206). New York: Ballinger.

    Google Scholar 

  • Holland, P.C. (1984). Differential effects of reinforcement of an inhibitory feature after serial and simultaneous feature negative discrimination training. Journal of Experimental Psychology: Animal Behavior Processes, 10, 461–475.

    PubMed  CAS  Google Scholar 

  • Holland, P.C. (1985). The nature of conditioned inhibition in serial and simultaneous feature negative discriminations. In R.R. Miller and N.E. Spear (Eds.), Information processing in animals: conditioned inhibition (pp. 267–297). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Holland, P.C. (1986). Transfer after serial feature positive discrimiantion training. Learning and Motivation, 17, 243–268.

    Google Scholar 

  • Holland, P.C., and Ross, R.T. (1981). Within-compound associations in serial compound conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 7, 228–241.

    Google Scholar 

  • Hull, C.L. (1930). Simple trial-and-error learning: a study in psychological theory. Psychological Review, 37, 241–256.

    Google Scholar 

  • Hull, C.L. (1935). The conflicting psychologies of learning—a way out. Psychological Review, 42, 491–516.

    Google Scholar 

  • Hull, C.L. (1937). adaptive behavior. Psychological Review, 44, 1–32.

    Google Scholar 

  • Hull, C.L. (1943). Principles of behavior: an introduction to behavior theory. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Hull, C.L. (1945). The discrimination of stimulus configuration and the hypothesis of afferent neural interaction. Psychological Review, 52, 133–142.

    Google Scholar 

  • Hull, C.L. (1950). Behavior postulates and corollaries—1949. Psychological Review, 57, 173–180.

    PubMed  CAS  Google Scholar 

  • Hull, C.L. (1951). Essentials of behavior. New Haven: Yale University Press.

    Google Scholar 

  • Hull, C.L. (1952). A behavior system. New Haven: Yale University Press.

    Google Scholar 

  • James, J.J., and Wagner, A.R. (1980). One-trial overshadowing: evidence of distributive processing. Journal of Experimental Psychology: Animal Behavior Processes, 6, 188–205.

    PubMed  CAS  Google Scholar 

  • Jenkins, H.M. (1985). Conditioned inhibition of key pecking in the pigeon. In R.R. Miller and N.E. Spear (Eds.), Information processing in animals: conditioned inhibition (pp. 327–353). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Jenkins, H.M., and Harrison, R.H. (1960). Effect of discrimination training on auditory generalization. Journal of Experimental Psychology, 59, 246–253.

    PubMed  CAS  Google Scholar 

  • Jones, J.E. (1962). Contiguity and reinforcement in relation to CS-US intervals in classical aversive conditioning. Psychological Review, 69, 176–186.

    PubMed  CAS  Google Scholar 

  • Kalat, J.W., and Rozin, P. (1973). “Learned safety” as a mechanism in long delay tasteaversion learning in rats. Journal of Comparative and Physiological Psychology, 83, 198–207.

    PubMed  CAS  Google Scholar 

  • Kamin, L.J. (1965). Temporal and intensity characteristics of the conditioned stimulus. In W.F. Prokasy (Ed.), Classical conditioning (pp. 118–147). New York: Academic Press.

    Google Scholar 

  • Kamin, L.J. (1968). ‘Attention-like’ processes in classical conditioning. In M.R. Jones (Ed.), Miami Symposium on the Prediction of Behavior: Aversive Stimulation (pp. 9–33). Miami: University of Miami Press.

    Google Scholar 

  • Kamin, L.J. (1969). Predictability, surprise, attention and conditioning. In B.A. Campbell and R.M. Church (Eds.), Punishment and aversive behavior (pp. 279–296). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Kehoe, E.J. (1988). A layered network of associative learning: learning to learn and configuration. Psychological Review, 95, 411–433.

    PubMed  CAS  Google Scholar 

  • Kehoe, E.J. (1990). Classical conditioning: fundamental issues for adaptive network models. In M. Gabriel and J. Moore (Eds.), Learning and computational neuroscience: foundations of adaptive networks (pp. 389–420). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kehoe, E.J., and Gormezano, I. (1980). Configuration and combination laws in conditioning with compound stimuli. Psychological Bulletin, 87, 351–378.

    PubMed  CAS  Google Scholar 

  • Kehoe, E.J., and Graham, P. (1988). Summation and configuration in negative paterning of the rabbit’s conditioned nictitating membrane response. Journal of Experimental Psychology: Animal Behavior Processes, 14, 320–333.

    Google Scholar 

  • Kehoe, E.J., and Morrow, L.D. (1984). Temporal dynamics of the rabbit’s nictitating membrane response in serial compound conditioned stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 10, 205–220.

    Google Scholar 

  • Kehoe, E.J., and Napier, R.M. (1991). In the blink of an eye: real-time stimulus factors in delay and trace conditioning of the rabbit’s nictitating membrane response. Quarterly Journal of Experimental Psychology, 43B, 257–277.

    Google Scholar 

  • Kehoe, E.J., Marshall-Goodell, B., and Gormezano, I. (1987). Differential conditioning of the rabbit’s nictitating membrane response to serial compound stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 13, 17–30.

    PubMed  CAS  Google Scholar 

  • Kelso, S.R., Ganong, A.H., and Brown, T.H. (1986). Hebbian synapses in hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 83, 5326–5330.

    PubMed  CAS  Google Scholar 

  • Kimble, G.A., and Ost, J.W.P. (1961). A conditioned inhibitory process in eyelid conditioning. Journal of Experimental Psychology, 61, 150–156.

    PubMed  CAS  Google Scholar 

  • Kimmel, H.D. (1965). Instrumental inibitory factors in classical conditioning. In W.F. Prokasy (Ed.), Classical conditioning (pp. 148–171). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Klopf, A.H. (1972). The hedonistic neuron: a theory of memory, learning, and intelligence. New York: Hemisphere.

    Google Scholar 

  • Klopf, A.H. (1988). A neuronal model of classical conditioning. Psychobiology, 16, 85–125.

    Google Scholar 

  • Klopf, A.H. (1989). Classical conditioning phenomena predicted by a drive-reinforcement model of neuronal function. In J.H. Byrne and W.D. Berry. (Eds.), Neural models of plasticity: experimental and theoretical approaches (pp. 105–132). New York: Academic Press.

    Google Scholar 

  • Kohler, W. (1930). La perception humain (trans. M. Henle). Journal de Psychologie Normale et Pathologique, 27, 5–30.

    Google Scholar 

  • Kohler, W. (1938). Simple structural functions in the chimpanzee and in the chicken. In W.D. Ellis (Ed.), A source book of gestalt psychology. New York: Harcourt, Brace.

    Google Scholar 

  • Konorski, J. (1948). Conditioned reflexes and neuron organization. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Konorski, J. (1967). Integrative activity of the brain. Chicago: University of Chicago Press.

    Google Scholar 

  • Krechevsky, I. (1938). A study of the continuity of the problem-solving process. Psychological Review, 45, 107–33.

    Google Scholar 

  • Lamoureux, J.A., Buhusi, C.V., and Schmajuk, N.A. (1998). A real-time theory of Pavlovian conditioning: simple stimuli and occasion setters. In N.A. Schmajuk and P.C. Holland. (Eds.), Occasion setting: associative learning and cognition in animals (pp. 383–424). Washington, DC: American Psychological Association.

    Google Scholar 

  • Lashley, K.S. (1942). An examination of the ‘continuity theory’ as applied to discrimination learning. Journal of General Psychology, 26, 241–265.

    Google Scholar 

  • Levinthal, C.F. (1973). The CS-US interval function in rabbit nictitating membrane response conditioning: single vs multiple trials per conditioning session. Learning and Motivation, 4, 259–267.

    Google Scholar 

  • Levinthal, C.F., and Papsdorf, J.D. (1970). The classically conditioned nictitating membrane response: the CS-US interval function with one trial per day. Psychonomic Science, 21, 296–297.

    Google Scholar 

  • Levinthal, C.F., Tarteil, R.H., Margolin, CM., and Fishman, H. (1985). The CS-US interval (ISI) function in rabbit nictitating membrane response conditioning with very long intertriai intervals. Animal Learning & behavior, 13, 228–232.

    Google Scholar 

  • Logan, F.A. (1956). A micromolar approach to behavior theory. Psychological Review, 63, 63–73.

    PubMed  CAS  Google Scholar 

  • Lovejoy, E.P. (1965). An attention theory of discrimination learning. Journal of Mathematical Psychology, 2, 342–362.

    Google Scholar 

  • Lubow, R.E. (1973). Latent inhibition. Psychological Bulletin, 79, 398–407.

    Google Scholar 

  • Lubow, R.E., and Moore, A.U. (1959). Latent inhibition: the effect of nonreinforced preexposure to the conditioned stimulus. Journal of Comparative & Physiological Psychology, 52, 415–419.

    CAS  Google Scholar 

  • Mackintosh, N.J. (1965). Selective attention in animal discrimination learning. Psychological Bulletin, 64, 124–150.

    PubMed  CAS  Google Scholar 

  • Mackintosh, N.J. (1975). A theory of attention: variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276–298.

    Google Scholar 

  • Mackintosh, N.J. (1983). Conditioning and associative learning. New York: Oxford University Press.

    Google Scholar 

  • Macrae, M., and Kehoe, E.J. (1995). Transfer between conditional and discrete discriminations in conditioning of the rabbit nictitating membrane response. Learning and Motivation, 26, 380–402.

    Google Scholar 

  • Maier, S.F., Rapaport, P., and Wheatley, K.L. (1976). Conditioned inhibition and the UCS-CS interval. Animal Learning & behavior, 4, 217–220.

    CAS  Google Scholar 

  • Marks, L.E. (1974). Sensory processes. New York: Academic Press.

    Google Scholar 

  • Marr, D.A. (1969). A theory of cerebellar cortex. Journal of Physiology, 202, 437-470.

    Google Scholar 

  • Martin, I., and Levy, A.B. (1965). Efficiency of the conditioned eyelid response. Science, 150, 781–783.

    PubMed  CAS  Google Scholar 

  • Mauk, M.D., and Donegan, N.H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning & Memory, 3, 130–158.

    Google Scholar 

  • Mauk, M.D., and Ruiz, B.P. (1991). The timing of conditioned eyelid responses: differential conditioning using multiple inter-stimulus intervals. Behavioral Neuroscience, 106, 666–681.

    Google Scholar 

  • Mazur, J.E., and Wagner, A.R. (1982). An episodic model of associative learning. In M. Commons, R. Herrnstein, and A.R. Wagner (Eds.), Quantitative analyses of behavior, Vol. 3. Acquisition (pp. 3–39). Cambridge, MA: Ballinger.

    Google Scholar 

  • Medin, D.L. (1975). A theory of context in discrimination learning. In G.H. Bower (Ed.), The psychology of learning and motivation, Vol. 9 (pp. 109–165). San Diego: Academic Press.

    Google Scholar 

  • Millenson, J.R., Kehoe, E.J., and Gormezano, I. (1977). Classical conditioning of the rabbit’s nictitating membrane response under fixed and mixed CS-US intervals. Learning and Motivation, 8, 351–366.

    Google Scholar 

  • Moore, J.W. (1991). Implementing connectionist algorithms for classical conditioning in the brain. In M.L. Commons, S. Grossberg, and J.E.R. Staddon (Eds.), Neural network models of conditioning and action (pp. 181–199). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Moore, J.W., and Stickney, K.J. (1980). Formation of attentional-associative networks in real time: role of the hippocampus and implications for conditioning. Physiological Psychology, 8, 207–217.

    Google Scholar 

  • Moore, J.W., and Stickney, K.J. (1982). Goal tracking in attentional-associative networks: spatial learning and the hippocampus. Physiological Psychology, 10, 202–208.

    Google Scholar 

  • Moore, J.W., Desmond, J.E., Berthier, N.E., Blazis, D.E.J., Sutton, R.S., and Barto, A.G. (1986). interstimulus intervals. Behavioural Brain Research, 21, 143–154.

    PubMed  CAS  Google Scholar 

  • Moore, J.W., Desmond, J.E., and Berthier, N.E. (1989). Adaptively timed conditioned responses and the cerebellum: a neural network approach. Biological Cybernetics, 62, 17–28.

    PubMed  CAS  Google Scholar 

  • Moore, J.W., Choi, J., and Brunzell, D.H. (1998). Predictive timing under temporal uncertainty: the TD model of the conditioned response. In D.A. Rosenbaum and C.E. Collyer (Eds.), Timing of behavior: neural, computational, and psychological perspectives (pp. 3–34). Cambridge, MA: MIT Press.

    Google Scholar 

  • Moscovitch, A., and LoLordo, V.M. (1968). Role of safety in the Pavlovian backward fear conditioning procedures. Journal of Comparative and Physiological Psychology, 66, 673–678.

    PubMed  CAS  Google Scholar 

  • Myers, K.M., Vogel, E.H., Shin, J., and Wagner, A.R. (2001). A comparison of the Rescorla-Wagner and Pearce models in a negative patterning and a summation problem. Animal Learning & behavior, 29, 36–45.

    Google Scholar 

  • Newlin, R.J., and LoLordo, V.M. (1976). trace autoshaping procedures. Journal of the Experimental Analysis of Behavior, 25, 227–241.

    PubMed  CAS  Google Scholar 

  • Paletta, M.S., and Wagner, A.R. (1986). Development of a context-specific tolerance to morphine: support for a dual-process interpretation. Behavioral Neuroscience, 100, 611–623.

    PubMed  CAS  Google Scholar 

  • Parker, D.B. (1985). Learning-logic (TR-47). Cambridge, MA: Massachusetts Institute of Technology, Center for Computational Research in Economics and Management Science.

    Google Scholar 

  • Patterson, M.M. (1970). Classical conditioning of the rabbit’s (Oryctolagus cuniculus) nictitating membrane response with fluctuating ISI and intracranial CS. Journal of Comparative and Physiological Psychology, 2, 193–202.

    Google Scholar 

  • Pavlov, I.P. (1927). Conditioned reflexes (Trans. by G.V. Anrep). London: Oxford University Press.

    Google Scholar 

  • Pearce, J.M. (1987). A model for stimulus generalization in Pavlovian conditioning. Psychological Review, 94, 61–73.

    PubMed  CAS  Google Scholar 

  • Pearce, J.M. (1994). Similarity and discrimination: a selective review and a connectionist model. Psychological Review, 101, 587–607.

    PubMed  CAS  Google Scholar 

  • Pearce, J.M., and Hall, G. (1980). A model for Pavlovian learning: variations in the effectiveness of conditioned but not unconditioned stimuli. Psychological Review, 87, 532–552.

    PubMed  CAS  Google Scholar 

  • Pearce, J.M., and Redhead, E.S. (1993). The influences of an irrelevant stimulus on two discriminations. Journal of Experimental Psychology: Animal Behavior Processes, 19, 180–190.

    Google Scholar 

  • Pfautz, P.L., and Wagner, A.R. (1976). Transient variations in responding to Pavlovian conditioned stimuli have implications for mechanisms of “priming.” Animal Learning & behavior, 4, 107–112.

    CAS  Google Scholar 

  • Plotkin, H.C., and Oakley, D.A. (1975). Backward conditioning in the rabbit (Oryctolagus cuniculus). Journal of Comparative and Physiological Psychology, 88, 586–590.

    CAS  Google Scholar 

  • Prokasy, W.F., and Papsdorf, J.D. (1965). Effect of increasing the interstimulus interval during classical conditioning of the albino rabbit. Journal of Comparative and Physiological Psychology, 60, 249–252.

    PubMed  CAS  Google Scholar 

  • Razran, G. (1957). The dominance-contiguity theory of the acquisition of classical conditioning. Psychological Bulletin, 54, 1–46.

    PubMed  CAS  Google Scholar 

  • Rescorla, R.A. (1968). Probability of shock in the presence and absence of CS in fear conditioning. Journal of Comparative and Physiological Psychology, 66, 1–5.

    PubMed  CAS  Google Scholar 

  • Rescorla, R.A. (1972). “Configurai” conditioning in discrete-trial bar pressing. Journal of Comparative and Physiological Psychology, 79, 307–317.

    PubMed  CAS  Google Scholar 

  • Rescorla, R.A. (1973). Evidence for the “unique stimulus” account of configurai conditioning. Journal of Comparative and Physiological Psychology, 85, 331–338.

    Google Scholar 

  • Rescorla, R.A. (1979). Conditioned inhibition and extinction. In A. Dickinson and R.A. Boakes (Eds.), Mechanisms of learning and motivation (pp. 83–110). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Rescorla, R.A. (1980). Simultaneous and successive associations in sensory preconditioning. Journal of Experimental Psychology: Animal Behavior Processes, 6, 207–216.

    PubMed  CAS  Google Scholar 

  • Rescorla, R.A. (1985). Inhibition and facilitation. In R.R. Miller and N.E. Spear (Eds.), Information processing in animals: conditioned inhibition (pp. 299–326). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Rescorla, R.A., and Wagner, A.R. (1972). A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In A.H. Black and W.F. Proasky (Eds.), Classical conditioning. II (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Revusky, S. (1971). The role of interference in association over a delay. In W.K. Honig and P.H.R. James (Eds.), Animal memory (pp. 155–213). New York: Academic Press.

    Google Scholar 

  • Robbins, D. (1970). Stimulus selection in human discrimination learning and transfer. Journal of Experimental Psychology, 84, 282–290.

    Google Scholar 

  • Ross, R.T., and Holland, P.C. (1981). Conditioning of simultaneous and serial feature-positive discriminations. Animal Learning & behavior, 9, 292–303.

    Google Scholar 

  • Rudy, J.W. (1974). Stimulus selection in animal conditioning and paired-associate learning: variations in the associative process. Journal of Verbal Learning & Verbal Behavior, 13, 282–296.

    Google Scholar 

  • Rumelhart, D.E., and McClelland, J.L. (1986). Parallel distributed processing: explorations in the microstructures of cognition. Vol. 1. Cambridge: MIT Press.

    Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., and Williams, G.E. (1986). Learning internal representations by error propagation. In D.E. Rumelhart and J.L. McClelland (Eds.), Parallel distributed processing: explorations in the microstructure of cognition: Vol. 1. Foundations (pp. 318–362). Cambridge, MA: Bradford MIT Press.

    Google Scholar 

  • Saavedra, M.A. (1975). Pavlovian compound conditioning in the rabbit. Learning and Motivation, 6, 314–326.

    Google Scholar 

  • Schmajuk, N.A. (1997). Animal learning and cognition: a neural network approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • Schmajuk, N.A., and Buhusi, C.V. (1997). Stimulus configuration, occasion setting, and the hippocampus. Behavioral Neuroscience, 111, 1–24.

    Google Scholar 

  • Schmajuk, N.A., and DiCarlo, J.J. (1992). Stimulus configuration, classical conditioning, and hippocampal function. Psychological Review, 99, 268–305.

    PubMed  CAS  Google Scholar 

  • Schmajuk, N.A., and Moore, J.W. (1985). Real-time attentional models for classical conditioning and the hippocampus. Physiological Psychology, 13, 278–290.

    Google Scholar 

  • Schmajuk, N.A., and Moore, J.W. (1988). The hippocampus and the classically conditioned nictitating membrane response: a real-time attentional-associative model. Psychobiology, 16, 20–35.

    Google Scholar 

  • Schmajuk, N.A., Lam, Y.W., and Gray, J.A. (1966). Latent inhibition: a neural network approach. Journal of Experimental Psychology: Animal Behavior Processes, 22, 321–349.

    Google Scholar 

  • Schmajuk, N.A., Lamoureux, J.A., and Holland, P.C. (1998). Occasion setting: a neural network approach. Psychological Review, 105, 3–32.

    PubMed  CAS  Google Scholar 

  • Schneiderman, N. (1966). Interstimulus interval function of the nictitating membrane response under delay versus trace conditioning. Journal of Comparative and Physiological Psychology, 62, 397–402.

    Google Scholar 

  • Schneiderman, N. (1972). Response system divergencies in aversive classical conditioning. In A.H. Black and W.F. Proasky (Eds.), Classical conditioning. II: Current theory and research (pp. 313–376). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Schneiderman, N., and Gormezano, I. (1964). Conditioning of the nictitating membrane of the rabbit as a function of CS-US interval. Journal of Comparative and Physiological Psychology, 57, 188–195.

    PubMed  CAS  Google Scholar 

  • Shanks, D.R. (1993). Human instrumental learning: a critical review of data and theory. British Journal of Psychology, 84, 319–354.

    PubMed  Google Scholar 

  • Sherrington, C.S. (1929). Ferner lecture. Proceedings of the Royal Society, B, 55, 332.

    Google Scholar 

  • Skinner, B.F. (1938). The behavior of organisms. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Smith, M.C. (1968). CS-US interval and US intensity in classical conditioning of the rabbit’s nictitating membrane response. Journal of Comparative and Physiological Psychology, 66, 679–687.

    PubMed  CAS  Google Scholar 

  • Smith, M.C., Coleman, S.R., and Gormezano, I. (1969). forward CS-US intervals. Journal of Comparative and Physiological Psychology, 69, 226–231.

    PubMed  CAS  Google Scholar 

  • Spence, K.W. (1936). The nature of discrimination learning in animals. Psychological Review, 43, 427–449.

    Google Scholar 

  • Spence, K.W. (1937). The differential response in animals to stimuli varying within a single dimension. Psychological Review, 44, 430–44.

    Google Scholar 

  • Spence, K.W. (1956). Behavior theory and conditioning. New Haven: Yale University Press.

    Google Scholar 

  • Spence, K.W. (1960). Behavior theory and learning. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Spence, K.W., and Taylor, J. (1951). Anxiety and strength of the UCS as determiners of the amount of eyelid conditioning. Journal of Experimental Psychology, 42, 183–188.

    PubMed  CAS  Google Scholar 

  • Spooner, A., and Kellogg, W.N. (1947). The backward-conditioning curve. American Journal of Psychology, 60, 321–334.

    PubMed  CAS  Google Scholar 

  • Sutherland, N.S. (1964). Visual discrimination in animals. British Medical Bulletin, 20, 54–59.

    PubMed  CAS  Google Scholar 

  • Sutherland, N.S., and Mackintosh, N.J. (1971). Mechanisms of animal discrimination learning. New York: Academic Press.

    Google Scholar 

  • Sutton, R.S., and Barto, A.G. (1981). Toward a modern theory of adaptive networks: expectation and prediction. Psychological Review, 88, 135–170.

    PubMed  CAS  Google Scholar 

  • Sutton, R.S., and Barto, A.G. (1990). Time-derivative models of Pavlovian reinforcement. In M. Gabriel and J. Moore (Eds.), Learning and computational neuroscience: Foundations of adaptive networks (pp. 497–534). Cambridge, MA: MIT Press.

    Google Scholar 

  • Terry, W.S. (1976). The effects of priming US representation in short-term memory on Pavlovian conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 2, 354–370.

    PubMed  CAS  Google Scholar 

  • Terry, W.S., and Wagner, A.R. (1975). Short-term memory for “surprising” vs. “expected” unconditioned stimuli in Pavlovian conditioning. Journal of Experimental Psychology: Animal Behavior Processes, 1, 122–133.

    PubMed  CAS  Google Scholar 

  • Terry, W.S., and Wagner, A.R. (1985). The effects of US priming on CR performance and acquisition. Bulletin of the Psychonomic Society, 23, 249–252.

    Google Scholar 

  • Thorndike, E.L. (1898). Animal intelligence: an experimental study of the associative processes in animals. Psychological Review Monograph Supplements, 2, no. 4 (whole no. 8).

    Google Scholar 

  • Thorndike, E.L. (1932). The fundamentals of learning. New York: Teachers College.

    Google Scholar 

  • Tieu, K.H., Keidel, A.L., McGann, J.P., Faulkner, B., and Brown, T.H. (1999). Perirhinal-amygdala circuit-level computational model of temporal encoding in fear conditioning. Psychobiology, 27, 1–25.

    Google Scholar 

  • Titchener, E.B. (1896). An outline of psychology. New York: Macmillan.

    Google Scholar 

  • Trabasso, T., and Bower, G.H. (1968). Attention in learning: theory and research. New York: Wiley.

    Google Scholar 

  • Unl, C.N. (1964). Effect of overlapping cues upon discrimination learning. Journal of Experimental Psychology, 67, 91–97.

    Google Scholar 

  • Van Dercar, D.H., and Schneiderman, N. (1967). Interstimulus interval functions in different response systems during classical discrimination conditioning of rabbits. Psychonomic Science, 9, 9–10.

    Google Scholar 

  • Van Hamme, L.J., and Wasserman, E.A. (1994). Cue competition in causality judgements: the role of nonpresentation of compound stimulus elements. Learning and Motivation, 25, 127–151.

    Google Scholar 

  • Vogel, E.H. (2001). A theoretical and empirical analysis of inhibition of delay in Pavlovian conditioning. Unpublished doctoral dissertation, Yale University, New Haven, CT.

    Google Scholar 

  • Wagner, A.R. (1969a). Stimulus validity and stimulus selection. In W.K. Honig and N.K. Mackintosh (Eds.), Fundamental issues in associative learning (pp. 90–122). Halifax: Dalhousie University Press.

    Google Scholar 

  • Wagner, A.R. (1969b). Stimulus-selection and a “modified continuity theory.” In G.H. Bower and J.T. Spence (Eds.), The psychology of learning and motivation, Vol. 3 (pp. 1–40). New York: Academic Press.

    Google Scholar 

  • Wagner, A.R. (1969c). Incidental stimuli and discrimination learning. In R.M. Gilbert and N.S. Sutherland (Eds.), Animal discrimination learning (pp. 83–111). London: Academic Press.

    Google Scholar 

  • Wagner, A.R. (1971). Elementary associations. In H.H. Kendler and J.T. Spence (Eds.), Essays in neobehaviorism: a memorial volume to Kenneth W. Spence (pp. 187–213). New York: Appleton-Century-Crofts.

    Google Scholar 

  • Wagner, A.R. (1972). The detection model. Unpublished manuscript.

    Google Scholar 

  • Wagner, A.R. (1976). Priming in STM: an information-processing mechanism for self-generated or retrieval-generated depression in performance. In T.J. Tighe and R.N. Leaton (Eds.), Habituation: perspectives from child development, animal behavior, and neurophysiology (pp. 95–128). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, A.R. (1978). Expectancies and the priming of STM. In S.H. Hulse, H. Fowler, and W.K. Honig (Eds.), Cognitive aspects of animal behavior (pp. 177–209). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, A.R. (1979). Habituation and memory. In A. Dickinson and R.A. Boakes (Eds.), Mechanisms of learning and motivation: a memorial to Jerry Konorski (pp. 53–82). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, A.R. (1981). SOP: a model of automatic memory processing in animal behavior. In N.E. Spear and R.R. Miller (Eds.), Information processing in animals: memory mechanisms (pp. 5–47). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, A.R. (1992). Some complexities anticipated by AESOP and other dual-representation theories. In H. Kimmel (Chair), Pavlovian conditioning with complex stimuli. Symposium conducted at the XXV International Congress of Psychology, Brussels, Belgium (July).

    Google Scholar 

  • Wagner, A.R., and Brandon, S.E. (1989). Evolution of a structured connectionist model of Pavlovian conditioning (AESOP). In S.B. Klein and R.R. Mowrer (Eds.). Contemporary learning theories: Pavlovian conditioning and the status of traditional learning theory (pp. 149–189). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, A.R., and Brandon, S.E. (2001). A componential theory of Pavlovian conditioning. In R.R. Mowrer and S.B. Klein (Eds.), Handbook of contemporary learning theories (pp. 23–64). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, A.R., and Larew, M.B. (1985). Opponent processes and Pavlovian inhibition. From R.R. Miller and N.E. Spear (Eds.), Information processing in animals: conditioned inhibition (pp. 233–265). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Wagner, A.R., and Rescorla, R.A. (1972). Inhibition in Pavlovian conditioning: application of a theory. In M.S. Halliday and R.A. Boakes (Eds.), Inhibition and learning (pp. 301–336). San Diego: Academic Press.

    Google Scholar 

  • Wagner, A.R., Logan, F.A., Haberlandt, K., and Price, T. (1968). Stimulus selection in animal discrimination learning. Journal of Experimental Psychology, 76, 171–180.

    PubMed  CAS  Google Scholar 

  • Wagner, A.R., Rudy, J.W., and Whitlow, J.W. (1973). Rehearsal in animal conditioning. Journal of Experimental Psychology, 97, 407–426.

    PubMed  CAS  Google Scholar 

  • Wasserman, E.A., Franklin, S.R., and Hearst, E. (1974). Pavlovian appetitive contingencies and approach versus withdrawal to conditioned stimuli in pigeons. Journal of Comparative and Physiological Psychology, 86, 616–627.

    PubMed  CAS  Google Scholar 

  • Weidemann, G., and Kehoe, E.J. (1997). Transfer and counterconditioning of conditional control in the rabbit nictitating membrane response. The Quarterly Journal of Experimental Psychology: Comparative & Physiological Psychology, 50B, 295–316.

    Google Scholar 

  • Whitlow, J.W. (1975). Short-term memory in habituation and dishabituation. Journal of Experimental Psychology: Animal Behavior Processes, 1, 189–206.

    Google Scholar 

  • Whitlow, J.W., and Wagner, A.R. (1972). Negative patterning in classical conditioning: summation of response tendencies to isolable and configurai components. Psychonomic Science, 27, 299–301.

    Google Scholar 

  • Widrow, G., and Hoff, M.E. (1960). Adaptive switching circuits. Institute of Radio Engineers, Western Electronic Show and Convention, convention record, Part 4 (pp. 96–104).

    Google Scholar 

  • Wilson, R.S. (1969). Cardiac response: determinants of conditioning. Journal of Comparative & Physiological Psychology Monographs, 68(1, Pt. 2), 1–23.

    CAS  Google Scholar 

  • Woodbury, C.B. (1943). The learning of stimulus patterns by dogs. Journal of Comparative Psychology, 35, 29–40.

    Google Scholar 

  • Yehle, A.L. (1968). Divergent response systems in rabbit conditioning. Journal of Experimental Psychology, 77, 468–473.

    PubMed  CAS  Google Scholar 

  • Yeo, A.G. (1974). The acquisition of conditioned suppression as a function of interstimulus interval duration. Quarterly Journal of Experimental Psychology, 26, 405–416.

    PubMed  CAS  Google Scholar 

  • Young, D.B., and Pearce, J.M. (1984). The influence of generalization decrement on the outcome of a feature-positive discrimination. Quarterly Journal of Experimental Psychology, 36B, 331–352.

    Google Scholar 

  • Zeaman, D., and House, B.J. (1963). The role of attention in retardate discrimination learning. In N.R. Ellis (Ed.), Handbook of mental deficiency: psychological theory and research (pp. 159–223). New York: McGraw-Hill.

    Google Scholar 

  • Zimmer-Hart, C.L., and Rescorla, R.A. (1974). Extinction of Pavlovian conditioned inhibition. Journal of Comparative and Physiological Psychology, 86, 837–845.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brandon, S.E., Vogel, E.H., Wagner, A.R. (2002). Computational Theories of Classical Conditioning. In: Moore, J.W. (eds) A Neuroscientist’s Guide to Classical Conditioning. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8558-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8558-3_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98805-4

  • Online ISBN: 978-1-4419-8558-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics