Skip to main content

Alveolar Epithelial Fluid Transport Under Normal and Pathological Conditions

  • Chapter
Acute Respiratory Distress Syndrome

Part of the book series: NATO ASI Series ((NSSA,volume 297))

  • 240 Accesses

Abstract

This chapter focuses on the mechanisms of salt and water transport across alveolar and distal airway epithelium of the adult lung. The first section presents evidence for active sodium transport as a mechanism for regulating in vivo alveolar fluid clearance, including a discussion of catecholamine and non-catecholamine dependent mechanisms for stimulating fluid transport. The second section reviews new evidence for involvement of transcellular water channels in alveolar and distal airway fluid transport, and the third section describes how the normal capacity of the alveolar epithelial barrier to transport salt and water is altered by exposure to clinically relevant pathological conditions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.C. Staub, Pulmonary edema, Physiol. Rev. 54:678–811 (1974).

    Article  PubMed  CAS  Google Scholar 

  2. A.E. Taylor, A.C. Guyton, and V.S. Bishop, Permeability of the alveolar epithelium to solutes, Circ. Res. 16:353–362 (1965).

    PubMed  CAS  Google Scholar 

  3. Y. Berthiaume, V.C. Broaddus, M.A. Gropper, T. Tanita, and M.A. Matthay, Alveolar liquid and protein clearance from normal dog lungs, J. Appl. Physiol. 65:585–593 (1988).

    PubMed  CAS  Google Scholar 

  4. M.A. Matthay, Y. Berthiaume, and N.C. Staub, Long-term clearance of liquid and protein from the lungs of unanesthetized sheep, J. Appl. Physiol. 59:928–934 (1985).

    PubMed  CAS  Google Scholar 

  5. M.A. Matthay, C.C. Landolt, and N.C. Staub, Differential liquid and protein clearance from the alveoli of anesthetized sheep, J. Appl. Physiol. 53:96–104 (1982).

    PubMed  CAS  Google Scholar 

  6. M.A. Matthay and J.P. Wiener-Kronish, Intact epithelial barrier function is critical for the resolution of alveolar edema in humans, Am. Rev. Respir. Dis. 142:1250–1257 (1990).

    PubMed  CAS  Google Scholar 

  7. V.B. Serikov, M. Grady, and M.A. Matthay, Effect of temperature on alveolar liquid and protein clearance in an in situ perfused goat lung, J. Appl. Physiol. 75:940–947 (1993).

    PubMed  CAS  Google Scholar 

  8. D.H. Rutschman, W. Olivera, and J.I. Sznajder, Active transport and passive liquid movement in isolated perfused rat lungs, J. Appl. Physiol. 75:1574–1580 (1993).

    PubMed  CAS  Google Scholar 

  9. T. Sakuma, G. Okaniwa, T. Nakada, T. Nishimura, S. Fujimura, and M.A. Matthay, Alveolar fluid clearance in the resected human lung, Am. J. Respir. Crit. Care Med. 150:305–310(1994).

    PubMed  CAS  Google Scholar 

  10. C. Jayr and M.A. Matthay, Alveolar and lung liquid clearance in the absence of pulmonary blood flow in sheep, J. Appl. Physiol. 71:1679–1687 (1991).

    PubMed  CAS  Google Scholar 

  11. C. Jayr, C. Garat, M. Meignan, J.-F. Pittet, M. Zelter, and M.A. Matthay, Alveolar liquid and protein clearance in anesthetized ventilated rats, J. Appl. Physiol. 76:2636–2642 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. N. Smedira, L. Gates, R. Hastings, C. Jayr, T. Sakuma, J.-F. Pittet, and M.A. Matthay, Alveolar and lung liquid clearance in anesthetized rabbits, J. Appl. Physiol. 70:1827–1835 (1991).

    PubMed  CAS  Google Scholar 

  13. G. Basset, C. Crone, and G. Saumon, Fluid absorption by rat lung in situ: pathways for sodium entry in the luminal membrane of alveolar epithelium, J. Physiol. (London) 384:325–345 (1987).

    CAS  Google Scholar 

  14. E.D. Crandall, T.H. Heming, R.L. Palombo, and B.E. Goodman, Effect of terbutaline on sodium transport in isolated perfused rat lung, J. Appl. Physiol. 60:289–294 (1986).

    PubMed  CAS  Google Scholar 

  15. R.M. Effros, G.R. Mason, J. Hukkanen, and P. Silverman, New evidence for active sodium transport from fluid-filled rat lungs, J. Appl. Physiol. 66:906–919 (1988).

    Google Scholar 

  16. F.J. Al-Bazzaz, Regulation of Na and CI transport in sheep distal airways, Am. J. Physiol. 267:L193–L198 (1994).

    PubMed  CAS  Google Scholar 

  17. S.T. Ballard, S.M. Schepens, J.C. Falcone, G.A. Meininger, and A.E. Taylor, Regional bioelectric properties of porcine airway epithelium, J. Appl. Physiol. 73:2021–2027 (1992).

    PubMed  CAS  Google Scholar 

  18. G. Basset, C. Crone, and G. Saumon, Significance of active ion transport in transalveolar water absorption: a study on isolated rat lung, J. Physiol. (London) 384:311–324 (1987).

    CAS  Google Scholar 

  19. T. Sakuma, J.F. Pittet, C. Jayr, and M.A. Matthay, Alveolar liquid and protein clearance in the absence of blood flow or ventilation in sheep, J. Appl. Physiol. 74:176–185 (1993).

    PubMed  CAS  Google Scholar 

  20. Y. Berthiaume, N.C. Staub, and M.A. Matthay, Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep, J. Clin. Invest. 79:335–343 (1987).

    Article  PubMed  CAS  Google Scholar 

  21. T. Sakuma, H. Folkesson, S. Suzuki, K. Usuda, M. Handa, G. Okaniwa, S. Fujimura, and M.A. Matthay, Salmeterol increases alveolar epithelial fluid clearance in both in vivo and ex vivo rat lungs, as well as in ex vivo human lungs, Am. J. Resp. Crit. Care Med. (1996).

    Google Scholar 

  22. J.D. Crapo, SX. Young, E.K. Fram, K.E. Pinkerton, B.E. Barry, and R.O. Crapo, Morphometric characteristics of cells in the alveolar region of mammalian lungs, Am. Rev. Respir. Dis. 128:S42–S46 (1983).

    PubMed  CAS  Google Scholar 

  23. K.E. Pinkerton, B.E. Barry, J.J. O’N eil, J.A. Raub, P.C. Pratt, and J.D. Crapo, Morphologic changes in the lung during the lifespan of Fisher 344 rats, Am. J. Anat. 164:155–174 (1982).

    Article  PubMed  CAS  Google Scholar 

  24. M.J. Brown, R.E. Olver, CA. Ramsden, L.B. Strang, and D.V. Walters, Effects of adrenaline and of spontaneous labour on the secretion and absorption of lung liquid in the fetal lamb, J. Physiol. (London) 344:137–152 (1983).

    CAS  Google Scholar 

  25. N. Finley, A. Norlin, D.C. Baines, and H.G. Folkesson, Alveolar epithelial fluid clearance is mediated by endogenous catecholamines at birth in guinea pigs, J. Clin. Invest., in press (1998).

    Google Scholar 

  26. B.E. Goodman, S.E. Brown, and E.D. Grandall, Regulation of transport across pulmonary alveolar epithelial cell monolayers, J. Appl. Physiol. 57:703–710 (1984).

    PubMed  CAS  Google Scholar 

  27. R.J. Mason, M.C. Williams, J.H. Widdicombe, M.J. Sanders, D.S. Misfeldt, and L.C.J. Berry, Transepithelial transport by pulmonary alveolar type II cells in primary culture, Proc. Natl. Acad. Sci. USA 79:6033–6037 (1982).

    Article  PubMed  CAS  Google Scholar 

  28. S. Matalon, Mechanisms and regulation of ion transport in adult mammalian alveolar type n pneumocytes, Am. J. Physiol. 261:C727–C738 (1991).

    PubMed  CAS  Google Scholar 

  29. R.M. Effros, G.R. Mason, K. Sietsema, P. Silverman, and J. Hukkanen, Fluid reabsorption and glucose consumption from edematous rat lungs, Circ. Res. 60:708–719 (1987).

    PubMed  CAS  Google Scholar 

  30. B.E. Goodman, K.J. Kim, and E.D. Crandall, Evidence for active sodium transport across alveolar epithelium of isolated rat lung, J. Appl. Physiol. 62:2460–2466 (1987).

    PubMed  CAS  Google Scholar 

  31. B.E. Goodman, J.L. Anderson, and J.W. Clemens, Evidence for regulation of sodium transport from airspace to vascular space by cAMP, Am. J. Physiol. 257:L86–L93 (1989).

    PubMed  CAS  Google Scholar 

  32. G. Saumon and G. Basset, Electrolyte and fluid transport across the mature alveolar epithelium, J. Appl. Physiol. 74:1–15 (1993).

    Article  PubMed  CAS  Google Scholar 

  33. Y. Berthiaume, Effect of exogenous cAMP and aminophylline on alveolar and lung liquid clearance in anesthetized sheep, J. Appl. Physiol. 70:2490–2497 (1991).

    PubMed  CAS  Google Scholar 

  34. Y. Berthiaume, M. Sapijaszko, J. MacKenzie, and M.P. Walsh, Protein kinase C activation does not stimulate lung liquid clearance in anesthetized sheep, Am. Rev. Respir. Dis. 144:1085–1090 (1991).

    PubMed  CAS  Google Scholar 

  35. B.E. Goodman, Lung fluid clearance, in: Fluid and Solute Transport in the Air Spaces of the Lungs, R.M. Effros and H.K. Chang, eds., Marcel Dekker, New York (1993).

    Google Scholar 

  36. J.V. McDonald, Jr., L.W. Gonzales, P.L. Ballard, J. Pitha, and J.M. Roberts, Lung beta-adrenoreceptor blockade affects perinatal surfactant release but not lung water, J. Appl. Physiol. 60:1727–1733 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. T. Sakuma, G. Okaniwa, T. Nakada, T. Nishimura, S. Fugimura, and M.A. Matthay, Terbutaline, a betaadrenergic agonist, increases alveolar liquid clearance in the resected human lung (abstract), FASEB J. 7:A436 (1993).

    Google Scholar 

  38. A.R. Campbell, H.G. Folkesson, O. Osorio, J.M. Cohen-Solal, and M.A. Matthay, Alveolar fluid clearance can be accelerated in ventilated sheep with an aerosolized beta-adrenergic agonist (salmeterol) (abstract), Am. J. Respir. Crit. Care Med. 151:A620 (1995).

    Google Scholar 

  39. Z. Borok, S.J. Danto, K.J. Kim, R.L. Lubman, and E.D. Crandall, Effects of EGF and dexamethasone on bioelectric properties of alveolar epithelial cell monolayers, Am. Rev. Respir. Dis. 147:1005A (1993).

    Google Scholar 

  40. H.A. Jaffe, W. Olivera, K. Ridge, D. Yeates, and J.I. Sznajder, In vivo administration of EGF increases Na+,K+-ATPase activity in alveolar type II cells, FASEB J. 8:A141 (1994).

    Google Scholar 

  41. H.G. Folkesson, J.-F. Pittet, G. Nitenberg, and M.A. Matthay, Transforming growth factor-α increases alveolar liquid clearance in anesthetized, ventilated rats, Am. J. Physiol. (Submitted).

    Google Scholar 

  42. M.A. Matthay, J.-F. Pittet, G. Nitenberg, and H.G. Folkesson, Transforming growth factor-α (TGF-α) and beta adrenergic agonist therapy:Comparative studies of their capacity to increase alveolar liquid clearance (abstract), FASEB J. 9:A568 (1995).

    Google Scholar 

  43. J.F. Pittet, S. Hashimoto, M. Pian, M. McElroy, G. Nitenberg, and J.P. Wiener-Kronish, Exotoxin A stimulates fluid reabsorption from distal airspaces in anesthetized rats, Am. J. Physiol. (Lung Cell. Mol. Physiol.) 270:L232–L241 (1996).

    CAS  Google Scholar 

  44. C. Garat, S. Rezaiguia, M. Meignan, M.P. d’Ortho, A. Harf, M.A. Matthay, and C. Jayr, Alveolar endotoxin increases alveolar liquid clearance in rats, J. Appl. Physiol. 79:2021–2028 (1995).

    PubMed  Google Scholar 

  45. S. Rezaiguia, C. Garat, M. Meignan, and C. Jayr, Acute bacterial pneumonia increases alveolar epithelial fluid clearance by a tumor necrosis factor-a dependent mechanism in rats (abstract), Am. J. Respir. Crit. Care Med. 151:A763 (1995).

    Google Scholar 

  46. G. Nitenberg, H.G. Folkesson, O. Osorio, J.M. Cohen-Solal, and M.A. Matthay, Alveolar epithelial liquid clearance is markedly increased 10 days following acute lung injury from bleomycin (abstract), Am. J. Respir. Crit. Care Med. 151:A620 (1995).

    Google Scholar 

  47. R.H. Hastings, M. Grady, T. Sakuma, and M.A. Matthay, Clearance of differentsized proteins from the alveolar space in humans and rabbits, J. Appl. Physiol. 73:1310–1316 (1992).

    PubMed  CAS  Google Scholar 

  48. L. Nici, R. Dowin, M. Gilmore-Hebert, J.D. Jamieson, and D.H. Ingbar, Upregulation of rat lung Na-K-ATPase during hyperoxic injury, Am. J. Physiol. 261:L307–L314 (1991).

    PubMed  CAS  Google Scholar 

  49. W. Olivera, K. Ridge, L.D. Wood, and J.I. Sznajder, Active sodium transport and alveolar epithelial Na-K-ATPase increase during subacute hyperoxia in rats, Am. J. Physiol. 266:L577–L584 (1994).

    PubMed  CAS  Google Scholar 

  50. G. Yue, W.J. Russell, D.J. Benos, R.M. Jackson, M.A. Olman, and S. Matalon, Increased expression and activity of sodium channels in alveolar type II cells of hyperoxic rats, Proc. Natl. Acad. Sci. USA 92:8418–8422 (1995).

    Article  PubMed  CAS  Google Scholar 

  51. E.P. Carter, S.E. Duvick, O.D. Wangensteen, and D.H. Ingbar, Rat lung Na,KATPase activity is decreased following 60 hours of hyperoxia, Am. J. Respir. Crit. Care Med. 149:A588 (1994).

    Google Scholar 

  52. J.D. Crapo, B.E. Barry, H.A. Foscue, and J. Shelburne, Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen, Am. Rev. Resp. Dis. 122:123–143 (1980).

    PubMed  CAS  Google Scholar 

  53. J.I. Sznajder, W.G. Olivera, K.M. Ridge, and D.H. Rutschman, Mechanisms of lung liquid clearance during hyperoxia in isolated rat lungs, Am. J. Respir. Crit. Care Med. 151:1519–1525 (1995).

    PubMed  CAS  Google Scholar 

  54. A.S. Verkman. Water Channels, Landes, Austin (1993).

    Google Scholar 

  55. A.N. van Hoek, M.L. Horn, L.H. Luthjens, M.D. de Jong, J.A. Dempster, and C.H. van Os, Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation, J. Biol. Chem. 226:16633–16635 (1991).

    Google Scholar 

  56. R.B. Zhang, K.A. Logée, and A.S. Verkman, Expression of mRNA coding for kidney and red cell water channels in Xenopus oocytes, J. Biol. Chem. 265:15375–15378 (1990).

    PubMed  CAS  Google Scholar 

  57. P. Agre, G.M. Preston, B.L. Smith, J.S. Jung, S. Raina, C. Moon, W.B. Guggino, and S. Nielsen, Aquaporin CHIP: the archetypal molecular water channel, Am. J. Physiol. 265:F463–F476 (1993).

    PubMed  CAS  Google Scholar 

  58. C.H. van Os, P.M.T. Deen, and J.A. Dempster, Aquaporins: water selective channels in biological membranes; molecular structure and tissue distribution, Biochim. Biophys. Acta 1197:291–309 (1994).

    PubMed  Google Scholar 

  59. A.S. Verkman, A.N. van Hoek, T. Ma, A. Frigeri, W.R. Skach, A. Mitra, B.K. Tamarrappoo, and J. Farinas, Water transport across mammalian cell membranes, Am. J. Physiol. (Cell Physiol.) 270:C12–C30 (1996).

    CAS  Google Scholar 

  60. J. Reizer, A. Reizer, and M.H. Saier, The MIP family of integral membrane channel proteins: sequence comparisons, evolutional relationships, reconstructed pathway of evolution, and proposed functional differentiation of two repeated halves of the protein, Crit. Rev. Biochem. Mol. Biol. 28:235–257 (1993).

    Article  PubMed  CAS  Google Scholar 

  61. J.F. Haskell, G. Yue, DJ. Benos, and S. Matalon, Upregulation of sodium conductive pathways in alveolar type II cells in sublethal hyperoxia, Am. J. Physiol. 266:L30–L37 (1994).

    PubMed  CAS  Google Scholar 

  62. H. Hasegawa, R. Zhang, A. Dohrman, and A.S. Verkman, Tissue-specific expression of mRNA encoding rat kidney water channel CHIP28k by in situ hybridization, Am. J. Physiol 264:C237–C245 (1993).

    PubMed  CAS  Google Scholar 

  63. K. Ishibashi, S. Sasaki, K. Fushimi, S. Uchida, M. Kuwahara, H. Saito, T. Furukawa, K. Nakajima, Y. Yamaguchi, T. Gojobori, and F. Marumo, Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells, Proc. Natl. Acad. Sci. USA 97:6269–6273 (1994).

    Article  Google Scholar 

  64. T. Ma, A. Frigeri, H. Hasegawa, and A.S. Verkman, Cloning of a water channel homolog expressed in brain meningeal cells and kidney collecting duct that functions as a stilbene-sensitive glycerol transporter, J. Biol. Chem. 269:21845–21849 (1994).

    PubMed  CAS  Google Scholar 

  65. S. Raina, G.M. Preston, W.B. Guggino, and P. Agre, Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues, J. Biol. Chem. 270:1908–1912 (1995).

    Article  PubMed  CAS  Google Scholar 

  66. G.M. Preston and P. Agre, Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons:member of an ancient channel family, Proc. Natl. Acad. Sci. USA 88:11110–11114 (1991).

    Article  PubMed  CAS  Google Scholar 

  67. A.N. van Hoek and A.S. Verkman, Functional reconstitution of the isolated erythrocyte water channel CHIP28, J. Biol. Chem. 267:18267–18269 (1992).

    PubMed  Google Scholar 

  68. M.L. Zeidel, S.V. Ambudkar, B.L. Smith, and P. Agre, Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein, Biochemistry 31:7436–7440 (1992).

    Article  PubMed  CAS  Google Scholar 

  69. G.M. Preston, T.P. Carroll, W.B. Guggino, and P. Agre, Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein, Science 256:385–387 (1992).

    Article  PubMed  CAS  Google Scholar 

  70. R. Zhang, W. Skach, H. Hasegawa, A.N. van Hoek, and A.S. Verkman, Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28, J. Cell Biol. 120:359–369 (1993).

    Article  PubMed  CAS  Google Scholar 

  71. T. Ma, A. Frigeri, S.T. Tsai, J.M. Verbavatz, and A.S. Verkman, Localization and functional analysis of CHIP28k water channels in stably transfected Chinese hamster ovary cells, J. Biol. Chem. 268:22756–22764 (1993).

    PubMed  CAS  Google Scholar 

  72. G.M. Preston, J.S. Jung, W.B. Guggino, and P. Agre, The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel, J. Biol. Chem. 268:17–20 (1993).

    PubMed  CAS  Google Scholar 

  73. R. Zhang, A.N. van Hoek, J. Biwersi, and A.S.Verkman, A point mutation at cysteine 189 blocks the water permeability of rat kidney water channel CHIP28k, Biochemistry 32:2938–2941 (1993).

    Article  PubMed  CAS  Google Scholar 

  74. A.N. van Hoek, M.C. Wiener, J.M. Verbavatz, D. Brown, P.H. Lipniunas, R.R. Townsend, and A.S. Verkman, Purification and structure-function analysis of native, PNGase F-treated, and endo-b-galactosidase-treated CHIP28 water channels, Biochemistry 34:2212–2219 (1995).

    Article  PubMed  Google Scholar 

  75. H. Hasegawa, S.C. Lian, W.E. Finkbeiner, and A.S. Verkman, Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining, Am. J. Physiol. 266:C893–C903 (1994).

    PubMed  CAS  Google Scholar 

  76. M.A. Matthay, H.G. Folkesson, A.S. Verkman, Salt and water transport across alveolar and distal airway epithelia in the adult lung, Am. J. Physiol. (Lung Cell. Mol. Physiol.) 270.L487–L503 (1996).

    CAS  Google Scholar 

  77. S. Nielsen, B.L. Smith, E.I. Christensen, and P. Agre, Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia, Proc. Natl. Acad. Sci. USA 90:7275–7279 (1993).

    Article  PubMed  CAS  Google Scholar 

  78. S. Nielsen, B.L. Smith, E.I. Christensen, M.A. Knepper, and P. Agre, CHIP28 water channels are localized in constitutively water-permeable segments of the nephron, J. Cell Biol. 120:371–383 (1993).

    Article  PubMed  CAS  Google Scholar 

  79. I. Sabolic, G. Valenti, J.M. Verbavatz, A.N. van Hoek, A.S. Verkman, D.A. Ausiello, and D. Brown, Localization of the CHIP28 water channel in rat kidney, Am. J. Physiol. 263:C1225–C1233 (1992).

    PubMed  CAS  Google Scholar 

  80. H. Hasegawa, T. Ma, W. Skach, M.A. Matthay, and A.S. Verkman, Molecular cloning of a mercurial-insensitive water channel expressed in selected watertransporting tissues, J. Biol. Chem. 269:5497–5500 (1994).

    PubMed  CAS  Google Scholar 

  81. A. Frigeri, M.A. Gropper, C.W. Turck, and A.S. Verkman, Immunolocalization of the mercurial-insensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes, Proc. Natl. Acad. Sci. USA 92:4328–4331 (1995).

    Article  PubMed  CAS  Google Scholar 

  82. A. Frigeri, M.A. Gropper, F. Umenishi, M. Katsura, D. Brown, and A.S. Verkman, Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial, and glandular tissues, J. Cell Sci. 108:2993–3002 (1995).

    PubMed  CAS  Google Scholar 

  83. L.B. Shi and A.S. Verkman, Selected cysteine point mutations confer mercurial sensitivity to the mercurial-insensitive water channel MIWC, Biochemistry 35:538–544 (1996).

    Article  PubMed  CAS  Google Scholar 

  84. L.B. Shi, W.R. Skach, T. Ma, and A.S. Verkman, Distinct biogenesis mechanisms for the water channels MIWC and CHIP28 at the endoplasmic reticulum, Biochemistry 34:8250–8256 (1995).

    Article  PubMed  CAS  Google Scholar 

  85. B. Yang, T. Ma, and A.S. Veikman, cDNA cloning, gene organization, and chromosomal localization of a human mercurial-insensitive water channel:evidence for distinct transcriptional units, J. Biol. Chem. 270:22907–22913 (1995).

    Article  PubMed  CAS  Google Scholar 

  86. S. Raina, G.M. Preston, W.B. Guggino, and P. Agre, Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues, J. Biol. Chem. 270:1908–1912 (1995).

    Article  PubMed  CAS  Google Scholar 

  87. Z. Borok, R.L. Lubman, S.I. Danto, X.L. Zhang, S.M. Zabski, L.S. King, D.M. Lee, P. Agre, and E.D. Crandall, Keratinocyte growth factor modulates alveolar epithelial cell phenotype in vitro: expression of aquaporin 5 (AQP5), Am. J. Physiol., in press (1998).

    Google Scholar 

  88. E.P. Carter, F. Umenishi, M.A. Matthay, and A.S. Verkman, Developmental changes in water permeability across the alveolar barrier in perinatal rabbit lung, J. Clin. Invest. 100:1071–1078 (1997).

    Article  PubMed  CAS  Google Scholar 

  89. R.M. Effros, Osmotic extraction of hypotonic fluid from the lungs, J. Clin. Invest. 5:935–947 (1974).

    Article  Google Scholar 

  90. H.G. Folkesson, F. Kheradmand, and M.A. Matthay, The effect of salt water on alveolar epithelial barrier function, Am. J. Respir. Crit. Care Med. 150:1555–1563 (1994).

    PubMed  CAS  Google Scholar 

  91. H.G. Folkesson, M.A. Matthay, H. Hasegawa, F. Kheradmand, and A.S. Verkman, Transcellular water transport in lung alveolar epithelium through mercurysensitive water channels, Proc. Natl. Acad. Sci. USA 91:4970–4974 (1994).

    Article  PubMed  CAS  Google Scholar 

  92. E.P. Carter, M.A. Matthay, J. Farinas, and A.S. Verkman, Transalveolar osmotic and diffusional water permeability in intact mouse lung measured by a novel surface fluorescence method, J. Gen. Physiol. 108:133–142 (1996).

    Article  PubMed  CAS  Google Scholar 

  93. H.G. Folkesson, M.A. Matthay, A. Frigeri, and A.S. Veikman, Transepithelial water permeability in microperfused distal airways: evidence for channel-mediated water transport, J. Clin. Invest. 97:664–671 (1996).

    Article  PubMed  CAS  Google Scholar 

  94. G.M. Preston, B.L. Smith, M.L. Zeidel, J.J. Moulds, and P. Agre, Mutations in aquaporin-1 in phenotypically normal humans without functional CHIP water channels, Science 265:1585–1587 (1994).

    Article  PubMed  CAS  Google Scholar 

  95. A. Fein, R.F. Grossman, J.G. Jones, E. Overland, J.F. Murray, and N.C. Staub, The value of edema fluid protein measurements in patients with pulmonary edema, Am. J. Med. 67:32–39 (1979).

    Article  PubMed  CAS  Google Scholar 

  96. M.A. Matthay, W.L. Eschenbacher, and E.J. Goetzl, Elevated concentrations of leukotriene D4 in pulmonary edema fluid of patients with the adult respiratory distress syndrome, J. Clin. Immunol. 4:479–483 (1984).

    Article  PubMed  CAS  Google Scholar 

  97. Y.M. Fukuda, M. Ishizaki, Y. Masuda, G. Kimura, O. Kawanami, and Y. Masugi, The role of intra-alveolar fibrosis in the process of pulmonary structural remodeling in patients with diffuse alveolar damage, Am. J. Pathol. 126:171–182 (1987).

    PubMed  CAS  Google Scholar 

  98. M. Bachofen and E.R. Weibel, Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia, Am. Rev. Respir. Dis. 116:589–615 (1977).

    PubMed  CAS  Google Scholar 

  99. J.G. Clark, J.A. Milberg, K.P. Steinberg, and L.D. Hudson, Type HI procollagen peptide in adult respiratory distress syndrome: association of increased peptide levels in bronchoalveolar lavage with increased risk for death, Ann. Intern. Med. 122:17–23 (1995).

    PubMed  CAS  Google Scholar 

  100. R.H. Hastings, J.R. Wright, K.H. Albertine, R. Ciriales, and M.A. Matthay, Effect of endocytosis inhbitors on alveolar clearance of albumin, immunoglobulin G, and SP-A in rabbits, Am. J. Physiol. (Lung Cell. Mol. Physiol.) 266:L544–L552 (1994).

    CAS  Google Scholar 

  101. M.A. Matthay, G. Nitenberg, and C. Jayr, The critical role of the alveolar epithelial barrier in acute lung injury, in: Yearbook of Intensive Care and Emergency Medicine, J.-L. Vincent, ed., Berlin: Springer-Verlag, Berlin (1995).

    Google Scholar 

  102. M.A. Matthay and J.P. Wiener-Kronish, Intact epithelial barrier function is critical for the resolution of alveolar edema in humans, Am. Rev. Respir. Dis. 142:1250–1257 (1990).

    PubMed  CAS  Google Scholar 

  103. J.G. Clark, J.A. Milberg, K.P. Steinberg, and L.D. Hudson, Type HI procollagen peptide in adult respiratory distress syndrome: association of increased peptide levels in btonchoalveolar lavage with increased risk for death, Ann. Intern. Med. 122:17–23 (1995).

    PubMed  CAS  Google Scholar 

  104. T.R. Martin, B.P. Pistorese, E.Y. Chi, R.B. Goodman, and M.A. Matthay, Effects of leukotriene B4 in the human lung: recruitment of neutrophils into the alveolar spaces without a change in protein permeability, J. Clin. Invest. 84:1609–1619 (1989).

    Article  PubMed  CAS  Google Scholar 

  105. H.G. Folkesson, F. Kheradmand, and M.A. Matthay, The effect of salt water on alveolar epithelial barrier function, Am. J. Respir. Crit. Care Med. 150:1555–1563 (1994).

    PubMed  CAS  Google Scholar 

  106. D.S. Cohen, M.A. Matthay, M.G. Cogan, and J.F. Murray, Pulmonary edema associated with salt water near-drowning: new insights, Am. Rev. Respir. Dis. 146:794–796 (1992).

    PubMed  CAS  Google Scholar 

  107. T. Sakuma, S. Suzuki, K. Usuda, M. Handa, G. Okaniwa, T. Nakada, S. Fujimura, and M.A. Matthay, Alveolar epithelial fluid transport mechanisms are preserved in the rewarmed human lung following severe hypothermia, J. Appl. Physiol. 80:1681–1686 (1996).

    PubMed  CAS  Google Scholar 

  108. J.P. Wiener-Kronish, K.H. Albertine, and M.A. Matthay, Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin, J. Clin. Invest. 88:864–875 (1991).

    Article  PubMed  CAS  Google Scholar 

  109. J.-F. Pittet, J.P. Wiener-Kronish, M.C. McElroy, H.G. Folkesson, and M.A. Matthay, Stimulation of lung epithelial liquid clearance by endogenous release of catecholamines in septic shock in anesthetized rats, J. Clin. Invest. 94:663–671 (1994).

    Article  PubMed  CAS  Google Scholar 

  110. J.-F. Pittet, J.P. Wiener-Kronish, V. Serikov, and M.A. Matthay, Resistance of the alveolar epithelium to injury from septic shock in sheep, Am. J. Respir. Crit. Care Med. 151:1093–1100 (1995).

    PubMed  CAS  Google Scholar 

  111. H.G. Folkesson, M.A. Matthay, C.A. Héb ert, and V.C. Broaddus, Acid aspiration induced lung injury in rabbits is mediated by interleukin-8 dependent mechanisms, J. Clin. Invest. 96:107–116 (1995).

    Article  Google Scholar 

  112. J.P. Wiener-Kronish, V.C. Broaddus, K.H. Albertine, M.A. Gropper, M.A. Matthay, and N.C. Staub, Relationship of pleural effusions to increased permeability pulmonary edema in anesthetized sheep, J. Clin. Invest. 82:1422–1429 (1988).

    Article  PubMed  CAS  Google Scholar 

  113. I. Kudoh, J.P. Wiener-Kronish, S. Hashimoto, J.-F. Pittet, and D. Frank, Exoproduct secretions of Pseudomonas aeruginosa strains influence of alveolar epithelial injury, Am. J. Physiol 267:L551–L556 (1994).

    PubMed  CAS  Google Scholar 

  114. J.P. Wiener-Kronish, T. Sakuma, I. Kudoh, J.F. Pittet, D. Frank, L. Dobbs, M.L. Vasil, and M.A. Matthay, Alveolar epithelial injury and pleural empyema in acute P. aeruginosa pneumonia in anesthetized rabbits, J. Appl. Physiol. 75:1661–1669 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Matthay, M.A., Horan, C., Bai, CX., Wang, Y. (1998). Alveolar Epithelial Fluid Transport Under Normal and Pathological Conditions. In: Matalon, S., Sznajder, J.L. (eds) Acute Respiratory Distress Syndrome. NATO ASI Series, vol 297. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8634-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8634-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45830-9

  • Online ISBN: 978-1-4419-8634-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics