Skip to main content

Fundamentals of Ocean Acoustics

  • Chapter
  • First Online:
Computational Ocean Acoustics

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 6346 Accesses

Abstract

The origin of computational and numericalacoustics coincides with the emergence of theoretical physics [1] as an intellectual endeavor. Pythagoras developed the theory of the (Western) musical scale in terms of a device called a monochord in which adjacent consonant notes of the musical scale were obtained by plucking two string segments whose relative lengths were ratios of the small integers 1, 2, and 3. He recognized that the lengths of these strings were inversely proportional to the frequency of sound generated when plucked. Since that time, computational methods in acoustics have expanded to use more numbers than these first three integers. Mersenne [2] in the seventeenth century added the irrationals as a numerical tool when he determined that the frequency of a vibrating string was proportional to the square root of its cross-sectional area. He further added to the quantitative tradition of acoustics with conclusions such as: “The velocity of sound is greater than the velocity of cannon balls and equals 230 six-foot intervals per second.” Although the former statement is also probably true for sound propagating in water, Mersenne’s contributions to the understanding of underwater acoustics are suspect judging from his speculation that sound travels more slowly in water than air because the density of water is greater than air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Gamow, The Great Physicists from Galileo to Einstein(Harper and Brothers, New York, 1961)

    Google Scholar 

  2. R.B. Lindsay (ed.), Acoustics: History and Philosophical Developments(Dowden, Hutchinson and Ross, Inc., Stroudsburg, PA, 1972)

    Google Scholar 

  3. R.J. Urick, Principles of Underwater Sound, 3rd edn. (McGraw-Hill, New York, 1983)

    Google Scholar 

  4. M. Lasky, Review of undersea acoustics to 1950. J. Acoust. Soc. Am. 61, 283–297 (1977)

    ADS  Google Scholar 

  5. A.D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications(American Institute of Physics, New York, 1989)

    Google Scholar 

  6. H. Medwin, C.S. Clay, Fundamentals of Acoustical Oceanography(Academic, San Diego, 1997)

    Google Scholar 

  7. V.A. Del Grosso, New equations for the speed of sound in natural waters (with comparisons to other equations). J. Acoust. Soc. Am. 56, 1084–1091 (1974)

    ADS  Google Scholar 

  8. J.L. Spiesberger, K. Metzger, A new algorithm for sound speed in seawater. J. Acoust. Soc. Am. 89, 2677–2688 (1991)

    ADS  Google Scholar 

  9. B.D. Dushaw, P.F. Worcester, B.D. Cornuelle, B.M. Howe, On equations for the speed of sound in seawater. J. Acoust. Soc. Am. 93, 255–275 (1993)

    ADS  Google Scholar 

  10. J. Northrup, J.G. Colborn, Sofar channel axial sound speed and depth in the Atlantic Ocean. J. Geophys. Res. 79, 5633–5641 (1974)

    ADS  Google Scholar 

  11. J. Sellschopp, Towed thermistor chain data collected during the cruise NORDMEER 87. Rep. FWG-87-4. (Forschungsanstalt der Bundeswehr für Wassershall- und Geophysik, Kiel, Germany, 1987)

    Google Scholar 

  12. S.M. Flatté, Wave propagation through random media: Contributions from ocean acoustics. Proc. IEEE 71, 1267–1294 (1983)

    ADS  Google Scholar 

  13. T.G. Leighton, The Acoustic Bubble(Academic, London, 1994)

    Google Scholar 

  14. O.B. Wilson, Introduction to Theory and Design of Sonar Transducers(Naval Sea Systems Command, Washington, DC, 1985)

    Google Scholar 

  15. H.G. Urban, Handbook of Underwater Acoustic Engineering(STN ATLAS Elektronik GmbH, Bremen, 2002)

    Google Scholar 

  16. P.J. Westervelt, Parametric acoustic arrays. J. Acoust. Soc. Am. 35, 535–537 (1963)

    ADS  Google Scholar 

  17. B.K. Novikov, O.V. Rudenko, V.I. Timoshenko, Nonlinear Underwater Acoustics(American Institute of Physics, New York, 1987)

    Google Scholar 

  18. K. Naugolnykh, L. Ostrovsky, Nonlinear Wave Processes in Acoustics(Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  19. A. Nehorai, E. Paldi, Acoustic vector sensor array processing. IEEE Trans. Signal Proc. 42, 2481–2491 (1994)

    ADS  Google Scholar 

  20. M.J. Berliner, J.F. Lindberg, Acoustic Particle Velocity Sensors: Design, Performance and Applications(American Institute of Physics, New York, 1996)

    Google Scholar 

  21. G.L. D’Spain, J.C. Luby, G.R. Wilson, R.A. Gramann, Vector sensors and vector sensor line arrays: Comments on optimal array gain and detection. J. Acoust. Soc. Am. 120, 171–185 (2006)

    ADS  Google Scholar 

  22. F.E. Hale, Long-range sound propagation in the deep ocean. J. Acoust. Soc. Am. 33, 456–464 (1961)

    ADS  Google Scholar 

  23. I. Tolstoy, C.S. Clay, Ocean Acoustics: Theory and Experiment in Underwater Sound(American Institute of Physics, New York, 1987)

    Google Scholar 

  24. W.M. Ewing, J.L. Worzel, Long-range sound transmission. Geol. Soc. Am. Mem. 27(1948)

    Google Scholar 

  25. R.J. Urick, Sound Propagation in the Sea(Defense Advanced Research Projects Agency, Washington, DC, 1979)

    Google Scholar 

  26. F.B. Jensen, Excess attenuation in low-frequency shallow-water acoustics: A shear wave effect? in Shear Waves in Marine Sediments, ed. by J.M. Hovem, M.D. Richardson, R.D. Stoll (Kluwer, Dordrecht, The Netherlands, 1991), pp. 421–430

    Google Scholar 

  27. F.B. Jensen, W.A. Kuperman, Optimum frequency of propagation in shallow water environments. J. Acoust. Soc. Am. 73, 813–819 (1983)

    ADS  Google Scholar 

  28. N.R. Chapman, G.R. Ebbeson, Acoustic shadowing by an isolated seamount. J. Acoust. Soc. Am. 73, 1979–1984 (1983)

    ADS  Google Scholar 

  29. W.H. Thorp, Analytic description of the low-frequency attenuation coefficient. J. Acoust. Soc. Am. 42, 270 (1967)

    ADS  Google Scholar 

  30. F.H. Fisher, V.P. Simmons, Sound absorption in sea water. J. Acoust. Soc. Am. 62, 558–564 (1977)

    ADS  Google Scholar 

  31. R.E. Francois, G.R. Garrison, Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 72, 1879–1890 (1982)

    Google Scholar 

  32. E.L. Hamilton, Geoacoustic modeling of the sea floor. J. Acoust. Soc. Am. 68, 1313–1340 (1980)

    ADS  Google Scholar 

  33. E.L. Hamilton, Acoustic properties of sediments. in Acoustics and Ocean Bottom, ed. by A. Lara-Sáenz, C. Ranz-Guerra, C. Carbó-Fité (C.S.I.C, Madrid, Spain, 1987), pp. 3–58

    Google Scholar 

  34. J. Zhou, X. Zhang, Low-frequency geoacoustic model for the effective properties of sandy sea bottoms. J. Acoust. Soc. Am. 125, 2847–2866 (2009)

    ADS  Google Scholar 

  35. D.R. Jackson, M.D. Richardson, High-Frequency Seafloor Acoustics(Springer, New York, 2007)

    Google Scholar 

  36. L.M. Brekhovskikh, Yu. Lysanov, Fundamentals of Ocean Acoustics, 2nd edn. (Springer, Berlin, Germany, 1991)

    MATH  Google Scholar 

  37. L.M. Brekhovskikh, O.A. Godin, Acoustics of Layered Media I(Springer, Berlin, Germany, 1990)

    Google Scholar 

  38. J.A. Ogilvy, Wave scattering from rough surfaces. Rep. Prog. Phys. 50, 1553–1608 (1987)

    ADS  MathSciNet  Google Scholar 

  39. R.P. Chapman, J.H. Harris, Surface backscattering strengths measured with explosive sound sources. J. Acoust. Soc. Am. 34, 1592–1597 (1962)

    ADS  Google Scholar 

  40. R.C. Gauss, R.F. Gragg, D. Wurmser, J.M. Fialkowski, R.W. Nero, Broadband models for predicting bistatic bottom, surface and volume scattering strengths. Rep. NRL/FR/7100-02-10042 (Naval Research Laboratory, Washington, DC, 2002)

    Google Scholar 

  41. APL-UW high-frequency ocean environmental acoustics model handbook. Rep. APL-UW TR 9407 (Applied Physics Laboratory, University of Washington, Seattle, WA, 1994)

    Google Scholar 

  42. R.P. Chapman, J.R. Marshall, Reverberation from deep scattering layers in the western North Atlantic. J. Acoust. Soc. Am. 40, 405–411 (1966)

    ADS  Google Scholar 

  43. D. Ross, Mechanics of Underwater Noise(Pergamon, New York, 1976)

    Google Scholar 

  44. R.K. Andrew, B.M. Howe, J.A. Mercer, M.A. Dzieciuch, Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. ARLO J. Acoust. Soc. Am. 3, 65–69 (2002)

    Google Scholar 

  45. R.J. Urick, Ambient Sea Noise in the Ocean(Naval Sea Systems Command, Washington, DC, 1984)

    Google Scholar 

  46. B.R. Kerman (ed.), Sea Surface Sound: Natural Mechanisms of Surface Generated Noise in the Ocean(Kluwer, Dordrecht, The Netherlands, 1988)

    Google Scholar 

  47. G.M. Wenz, Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956 (1962)

    ADS  Google Scholar 

  48. P.C. Etter, Underwater Acoustic Modeling and Simulation(E & FN Spon, London, UK, 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn B. Jensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H. (2011). Fundamentals of Ocean Acoustics. In: Computational Ocean Acoustics. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8678-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8678-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8677-1

  • Online ISBN: 978-1-4419-8678-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics