Skip to main content

Two-Dimensional Noise Images

  • Chapter
Fourier Analysis and Imaging

Abstract

Noise in an image can be defined as the unwanted part of that image. The noise may be random in some way, as is the pepper-and-salt appearance on a television screen when the station goes off the air, or it may be systematic, as with the ghost seen when an echo of the wanted signal arrives with a time delay after reflection from a hill. When the television image responds independently to sparks in a faulty thermostat in the nearby refrigerator or to a faulty ignition system on a passing motorcycle, the noise exhibits both random and systematic features. In other cases, the wanted signal may be random; thermal microwave or infrared radiation used for mapping the ground is of this nature. As a result, one person’s noise may be another person’s signal and vice versa. Very often it does not matter much what the character of the noise is, only its magnitude is needed, an attitude that is reflected in the term signal-to-noise ratio. As the examples show, the noise in an image need not be independent of, but can be closely connected with, the wanted signal itself. In the latter case if the signal is removed, the noise will change. When the noise is independent, it may be studied on its own in the absence of any wanted signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  • R. J. Adler (1981), The Geometry of Random Fields, John Wiley & Sons, New York.

    MATH  Google Scholar 

  • M. F. Barnsley (1988), “Fractal modelling of real world images,” in H-O Peitgen and D. Saupe, eds, The Science of Fractal Images, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • M. S. Bartleti (1975), The Statistical Analysis of Spatial Pattern, Chapman and Hall, London.

    Google Scholar 

  • B. Delaunay (1934), “Sur la sphère vide,” Bull. Acad. Sci. USSR, Classe des Sciences Mathérnatiques et Naturelles, Series 7, pp. 793–800.

    Google Scholar 

  • G. L. Dirichlet (1850), “Uber die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen,” Journal für Reine und Angewandte Mathematik, vol. 40, pp. 209–227.

    Article  MATH  Google Scholar 

  • W. A. Gardner, (1988) Statistical Spectral Analysis. A Nonprobabilistic Approach, Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • P. J. Green AND R. Sibson (1978), “Computing Dirichlet tessellations in the plane,” The Computer Journal, vol. 21, pp. 168–173.

    MathSciNet  MATH  Google Scholar 

  • P. Holgate (1972), “The use of distance methods for the analysis of spatial distribution of points,” in P. A. W. Lewis, ed., Stochastic Point Processes, John Wiley & Sons, New York.

    Google Scholar 

  • V. Icke AND VAN DER Weygaert (1991), “The galaxy distribution as a Voronoi foam,” Quarterly J. Roy. Astronom. Soc., vol. 32, pp. 85–112.

    Google Scholar 

  • B. Julesz (1960), “Binocular depth perception of computer-generated patterns,” Bell Syst. Tech. J., vol. 39, pp. 1125–1162.

    Google Scholar 

  • N. E. Thing (1993), “Magic Eye,” Viking Penguin, New York.

    Google Scholar 

  • C. W. Tyler AND Clarke (1990), “The autostereogram,” Proc. Int. Soc. Opt. Eng., vol. 1256, pp. 182–197.

    Google Scholar 

  • H. Larralde et al. (1992), “Territory covered by N diffusing particles,” Nature, vol. 355, pp. 423–426.

    Article  Google Scholar 

  • B. B. Mandelbrot (1982), The Fractal Geometry of Nature, W.H. Freeman, New York.

    MATH  Google Scholar 

  • R. Morrison (1984), “Low cost computer graphics for micro computers,” Software— Practice and Experience, vol. 12, pp. 767–776.

    Article  Google Scholar 

  • A. Okabe, B. Boots, AND K. Sugihara (1992), Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons, Chichester, U.K.

    MATH  Google Scholar 

  • A. Papoulis (1965), Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York.

    MATH  Google Scholar 

  • H-O Peitgen, H. Jurgens, AND D. Saupe (1992), Chaos and Fractals: New Frontiers of Science, Springer-Verlag, New York.

    Google Scholar 

  • Lord Rayleigh (1905), “The problem of the random walk,” Nature, vol. 72, p. 318.

    Article  Google Scholar 

  • B. D. Ripley (1981), Spatial Tessellations, John Wiley & Sons, New York.

    Google Scholar 

  • C. A. Rogers (1964), Packing and Covering, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • R. Samadani AND C. Han (1993), “Computer-assisted extraction of boundaries from images,” Conference Proceedings on Storage and Retrieval for Image and Video Databases, 2–3 February 1993, San Jose, California, Society of Photo-Optical Engineers, vol. 1908, pp. 219–224.

    Google Scholar 

  • J. G. Skellam (1952), Biometrika, vol. 39, pp. 346–362.

    MATH  Google Scholar 

  • R. T. Stevens (1990), Fractal Programming in Turbo Pascal, Redwood City, M&T Publishing.

    MATH  Google Scholar 

  • D. Stoyan, W. S. Kendall AND J. Mecke (1987), Stochastic Geometry and Its Applications, Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  • G. Voronoï (1908), “Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième mémoire, recherches sur les paralleloèdres primitifs,” Journal für Reine und Angewandte Mathematik, vol. 134, pp. 198–287.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bracewell, R. (2003). Two-Dimensional Noise Images. In: Fourier Analysis and Imaging. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8963-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8963-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4738-5

  • Online ISBN: 978-1-4419-8963-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics