Skip to main content

Coaxially Coupled Inverted Pendula: Bond Graph-Based Modelling, Design and Control

  • Chapter
  • First Online:

Abstract

A bond graph method is used to examine qualitative aspects of a class of unstable under-actuated mechanical systems. It is shown that torque actuation leads to an unstabilisable system, whereas velocity actuation gives a controllable system which has, however, a right-half plane zero. The fundamental limitations theory of feedback control when a system has a right-half plane zero and a right-half plane pole is used to evaluate the desirable physical properties of coaxially coupled inverted pendula. An experimental system which approximates such a system is used to illustrate and validate the approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Octave is the open-source high-level language, primarily intended for numerical computations (similar to the commercial product Matlab), available at www.octave.org

References

  1. F. E. Cellier. Continuous System Modelling. Springer, New York, NY 1991.

    Google Scholar 

  2. P.J. Gawthrop and L.P.S. Smith. Metamodelling: Bond Graphs and Dynamic Systems. Prentice Hall, Hemel Hempstead, Herts, England, 1996. ISBN 0-13-489824-9.

    Google Scholar 

  3. Dean Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. System Dynamics : Modeling and Simulation of Mechatronic Systems. Horizon Publishers and Distributors Inc, 3rd edition, New York, January 2000.

    Google Scholar 

  4. Amalendu Mukherjee, Ranjit Karmaker, and Arun Kumar Samantaray. Bond Graph in Modeling, Simulation and Fault Indentification. I.K. International, New Delhi, 2006.

    Google Scholar 

  5. P.J. Gawthrop and Geraint P. Bevan. Bond-graph modeling: a tutorial introduction for control engineers. IEEE Control Systems Magazine, 27(2):24–45, April 2007. 10.1109/MCS.2007.338279.

    Article  MathSciNet  Google Scholar 

  6. P.J. Gawthrop. Physical model-based control: a bond graph approach. Journal of the Franklin Institute, 332B(3):285–305, 1995b.

    Article  MATH  Google Scholar 

  7. P.J. Gawthrop. Bond graph based control using virtual actuators. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 218(4): 251–268, September 2004.

    Google Scholar 

  8. P.J. Gawthrop and Eric Ronco. Estimation and control of mechatronic systems using sensitivity bond graphs. Control Engineering Practice, 8(11):1237–1248, November 2000.

    Article  Google Scholar 

  9. P.J. Gawthrop, D.J. Wagg, and S.A. Neild. Bond graph based control and substructuring. Simulation Modelling Practice and Theory, 17(1):211–227, January 2009. 10.1016/ j.simpat.2007.10.005. Available online 19 November 2007.

    Article  Google Scholar 

  10. N. Hogan. Impedance control: an approach to manipulation. Part I–theory. ASME Journal of Dynamic Systems, Measurement and Control, 107:1–7, March 1985a.

    Article  MATH  Google Scholar 

  11. N. Hogan. Impedance control: an approach to manipulation. Part II–implementation. ASME Journal of Dynamic Systems, Measurement and Control, 107:8–16, March 1985b.

    Article  MATH  Google Scholar 

  12. N. Hogan. Impedance control: an approach to manipulation. Part III–applications. ASME Journal of Dynamic Systems, Measurement and Control, 107:17–24, March 1985c.

    Article  MATH  Google Scholar 

  13. Wilfrid Marquis-Favre, Omar Mouhib, Bogdan Chereji, Daniel Thomasset, Jerome Pousin, and Martine Picq. Bond graph formulation of an optimal control problem for linear time-invariant systems. Journal of the Franklin Institute, 345(4):349–373, 2008. Available online 17 November 2007.

    Article  MathSciNet  MATH  Google Scholar 

  14. D.W. Roberts, D.J. Ballance, and P.J. Gawthrop. Design and implementation of a bond graph observer for robot control. Control Engineering Practice, 3(10):1447–1457, October 1995. ISSN 0967-0661.

    Article  Google Scholar 

  15. A. Sharon, N. Hogan, and D.E. Hardt. Controller design in the physical domain. Journal of the Franklin Institute, 328(5):697–721, 1991.

    Article  Google Scholar 

  16. A. Rahmani, C. Sueur, and G. Dauphin-Tanguy. Pole assignment for systems modelled by bond graph. Journal of the Franklin Institute, 331:299–312, May 1994.

    Article  MathSciNet  Google Scholar 

  17. C. Sueur and G. Dauphin-Tanguy. Structural controllability/observability of linear systems represented by bond graphs. Journal of the Franklin Institute, 326:869–883, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Sueur and G. Dauphin-Tanguy. Bond-graph approach for structural analysis of mimo linear systems. Journal of the Franklin Institute, 328:55–70, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  19. R.F. Ngwompo, S. Scavarda, and D. Thomasset. Physical model-based inversion in control systems design using bond graph representation part 1: theory. Proceedings of the I MECH E Part I Journal of Systems and Control Engineering, 215(2):95–103, April 2001a.

    Article  Google Scholar 

  20. R.F. Ngwompo, S. Scavarda, and D. Thomasset. Physical model-based inversion in control systems design using bond graph representation part 2: applications. Proceedings of the I MECH E Part I Journal of Systems and Control Engineering, 215(2):105–112, April 2001b.

    Article  Google Scholar 

  21. P.J. Gawthrop. Physical interpretation of inverse dynamics using bicausal bond graphs. Journal of the Franklin Institute, 337(6):743–769, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Fotsu Ngwompo, S. Scavarda, and D. Thomasset. Inversion of linear time-invariant siso systems modelled by bond graph. Journal of the Franklin Institute, 333:157–174, March 1996.

    Article  Google Scholar 

  23. P.J. Gawthrop, D.W. Virden, S.A. Neild, and D.J. Wagg. Emulator-based control for actuator-based hardware-in-the-loop testing. Control Engineering Practice, 16(8):897–908, 2008. 10.1016/j.conengprac.2007.10.009. Available online 3 December 2007.

    Article  Google Scholar 

  24. Roger F. Ngwompo and P.J. Gawthrop. Bond graph based simulation of nonlinear inverse systems using physical performance specifications. Journal of the Franklin Institute, 336(8):1225–1247, November 1999.

    Article  MATH  Google Scholar 

  25. G.C. Goodwin, S.F. Graebe, and M.E. Salgado. Control System Design. Prentice Hall, Upper Saddle River, NJ, 2001.

    Google Scholar 

  26. S. Skogestad and I. Postlethwaite. Multivariable Feedback Control Analysis and Design. Wiley, New York, NY, 1996.

    Google Scholar 

  27. P.J. Gawthrop. Bicausal bond graphs. In F. E. Cellier and J.J. Granda, editors, Proceedings of the International Conference On Bond Graph Modeling and Simulation (ICBGM’95), volume 27 of Simulation Series, pages 83–88, Society for Computer Simulation, Las Vegas, NY, January 1995a. ISBN 1-56555-037-4.

    Google Scholar 

  28. P.J. Gawthrop. Control system configuration: Inversion and bicausal bond graphs. In J. J. Granda and G. Dauphin-Tanguy, editors, Proceedings of the 1997 International Conference On Bond Graph Modeling and Simulation (ICBGM’97), volume 29 of Simulation Series, pages 97–102, Society for Computer Simulation, Phoenix, AZ, January 1997.

    Google Scholar 

  29. Jacob Apkarian. A Comprehensive and Modular Laboratory for Control Systems Design and Implementation. Quanser Consulting, Markham, Ontario, Canada, 1995.

    Google Scholar 

  30. S.L. Campbell, J.P. Chancelier, and R. Nikoukhah. Modeling and Simulation in Scilab/Scicos. Springer, Berlin, 2006.

    MATH  Google Scholar 

  31. Roberto Bucher and Silvano Balemi. Rapid controller prototyping with Matlab/Simulink and Linux. Control Engineering Practice, 14(2):185–192, 2006.

    Article  Google Scholar 

  32. John W. Eaton. GNU Octave Manual. Network Theory Limited, Bristol, 2002. ISBN 0-9541617-2-6.

    Google Scholar 

Download references

Acknowledgments

The experimental work was accomplished while the first author was a visiting professor at the University of New South Wales within the Systems and Control Research Group of the School of Electrical Engineering &; Telecommunications supported by the Royal Academy of Engineering International Travel Grant ITG C7-292. At this time, the second author was undertaking a Master’s research project in control engineering. Both authors would like to thank David Clements, Tim Hesketh and Chris Lu for suggesting the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.J. Gawthrop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gawthrop, P., Rizwi, F. (2011). Coaxially Coupled Inverted Pendula: Bond Graph-Based Modelling, Design and Control. In: Borutzky, W. (eds) Bond Graph Modelling of Engineering Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9368-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9368-7_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9367-0

  • Online ISBN: 978-1-4419-9368-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics