Skip to main content

Portfolio Choice Models Based on Second-Order Stochastic Dominance Measures: An Overview and a Computational Study

  • Chapter
  • First Online:
Stochastic Optimization Methods in Finance and Energy

Abstract

In this chapter we present an overview of second-order stochastic dominance-based models with a focus on those using dominance measures. In terms of portfolio policy, the aim is to find a portfolio whose return distribution dominates the index distribution to the largest possible extent. We compare two approaches, the unscaled model of Roman et al. (Mathematical Programming Series B 108: 541–569, 2006) and the scaled model of Fabian et al. (Quantitative Finance 2010). We constructed optimal portfolios using representations of the future asset returns given by historical data on the one hand, and scenarios generated by geometric Brownian motion on the other hand. In the latter case, the parameters of the GBM were obtained from the historical data. Our test data consisted of stock returns from the FTSE 100 basket, together with the index returns. Part of the data were reserved for out-of-sample tests. We examined the return distributions belonging to the respective optimal portfolios of the unscaled and the scaled problems. The unscaled model focuses on the worst cases and hence enhances safety. We found that the performance of the unscaled model is improved by using scenario generators. On the other hand, the scaled model replicates the shape of the index distribution. Scenario generation had little effect on the scaled model. We also compared the shapes of the histograms belonging to corresponding pairs of in-sample and out-of-sample tests and observed a remarkable robustness in both models. We think these features make these dominance measures good alternatives for classic risk measures in certain applications, including certain multistage ones. We mention two candidate applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AitSahlia, F., C-J. Wang, V.E. Cabrera, S. Uryasev, and C.W. Fraisse (2009). Optimal crop planting schedules and financial hedging strategies under ENSO-based climate forecasts. Annals of Operations Research,  published online, DOI:10.1007/s10479-009-0551-2

    Google Scholar 

  • Artzner, Ph., F. Delbaen, J.-M. Eber, and D. Heath (1999). Coherent measures of risk. Mathematical Finance  9, 203–227.

    Article  Google Scholar 

  • Carr, P., H. Geman, and D. Madan (2001). Pricing and hedging in incomplete markets. Journal of Financial Economics  62, 131–167.

    Article  Google Scholar 

  • Cherubini, U., E. Luciano, and W. Vecchiato (2006). Copula Methods in Finance.  Wiley, New York, NY.

    Google Scholar 

  • Consigli, G. and M.A.H. Dempster (1998). The CALM stochastic programming model for dynamic asset-liability management. In Worldwide Asset and Liability Modeling,  edited by W.T. Ziemba and J.M. Mulvey, pp 464–500. Cambridge University Press, Cambridge.

    Google Scholar 

  • Deák, I. (1990). Random Number Generators and Simulation.  Akadémiai Kiadó, Budapest.

    Google Scholar 

  • Delbaen, F. (2002). Coherent risk measures on general probability spaces. Essays in Honour of Dieter Sondermann.  Springer, Berlin, Germany.

    Google Scholar 

  • Dempster, M.A.H. and R.R. Merkovsky (1995). A practical geometrically convergent cutting plane algorithm. SIAM Journal on Numerical Analysis  32, 631–644.

    Article  Google Scholar 

  • Dentcheva, D. and A. Ruszczyński (2003). Optimization with stochastic dominance constraints. SIAM Journal on Optimization  14, 548–566.

    Article  Google Scholar 

  • Dentcheva, D. and A. Ruszczyński (2006). Portfolio optimization with stochastic dominance constraints. Journal of Banking & Finance  30, 433–451.

    Article  Google Scholar 

  • Ellison, E.F.D., M. Hajian, H. Jones, R. Levkovitz, I. Maros, G. Mitra, and D. Sayers (2008). FortMP Manual.  Brunel University, London and Numerical Algorithms Group, Oxford. http://www.optirisk-systems.com/manuals/FortmpManual.pdf

  • Fábián, C.I., G. Mitra, and D. Roman (2009). Processing Second-Order Stochastic Dominance models using cutting-plane representations. Mathematical Programming, Ser A.  DOI:10.1007/s10107-009-0326-1.

    Google Scholar 

  • Fábián, C.I., G. Mitra, D. Roman, and V. Zverovich (2010). An enhanced model for portfolio choice with SSD criteria: a constructive approach. Quantitative Finance. DOI: 10.1080/14697680903493607.

    Google Scholar 

  • Föllmer, H. and A. Schied (2002). Convex measures of risk and trading constraints. Finance and Stochastics  6, 429–447.

    Article  Google Scholar 

  • Fourer, R., D. M. Gay, and B. Kernighan. (2002). AMPL: A Modeling Language for Mathe-matical Programming. Brooks/Cole Publishing Company/Cengage Learning.

    Google Scholar 

  • Hadar, J. and W. Russel (1969). Rules for ordering uncertain prospects. The American Economic Review  59, 25–34.

    Google Scholar 

  • Heath, D. (2000). Back to the future. Plenary Lecture at the First World Congress of the Bachelier Society,  Paris, June 2000.

    Google Scholar 

  • Joe, H. (1997). Multivariate Models and Dependence Concepts.  Chapman & Hall, London.

    Google Scholar 

  • Klein Haneveld, W.K. (1986). Duality in stochastic linear and dynamic programming. Lecture Notes in Economics and Math. Systems  274. Springer, New York, NY.

    Google Scholar 

  • Klein Haneveld, W.K. and M.H. van der Vlerk (2006). Integrated chance constraints: reduced forms and an algorithm. Computational Management Science  3, 245–269.

    Article  Google Scholar 

  • Kroll, Y. and H. Levy (1980). Stochastic dominance: A review and some new evidence. Research in Finance  2, 163–227.

    Google Scholar 

  • Künzi-Bay, A. and J. Mayer (2006). Computational aspects of minimizing conditional value-at-risk. Computational Management Science  3, 3–27.

    Article  Google Scholar 

  • Luedtke, J. (2008). New formulations for optimization under stochastic dominance constraints. SIAM Journal on Optimization  19, 1433–1450.

    Article  Google Scholar 

  • McNeil, A.J., R. Frey, and P. Embrechts (2005). Quantitative Risk Management. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Ogryczak, W. (2000). Multiple criteria linear programming model for portfolio selection. Annals of Operations Research  97, 143–162.

    Article  Google Scholar 

  • Ogryczak, W. (2002). Multiple criteria optimization and decisions under risk. Control and Cybernetics  31, 975–1003.

    Google Scholar 

  • Ogryczak, W. and A. Ruszczyński (2001). On consistency of stochastic dominance and mean- semideviations models. Mathematical Programming  89, 217–232.

    Article  Google Scholar 

  • Ogryczak, W. and A. Ruszczyński (2002). Dual stochastic dominance and related mean-risk models. SIAM Journal on Optimization  13, 60–78.

    Article  Google Scholar 

  • Pflug, G. (2000). Some remarks on the value-at-risk and the conditional value-at-risk. In Probabilistic Constrained Optimization:Methodology and Applications, edited by S. Uryasev, pp. 272–281. Kluwer, Norwell, MA.

    Google Scholar 

  • Rockafellar, R.T. (2007). Coherent approaches to risk in optimization under uncertainty. Tutorials in Operations Research  INFORMS 2007, 38–61.

    Google Scholar 

  • Rockafellar, R.T. and S. Uryasev (2000). Optimization of conditional value-at-risk. Journal of Risk  2, 21–41.

    Google Scholar 

  • Rockafellar, R.T. and S. Uryasev (2002). Conditional value-at-risk for general loss distributions. Journal of Banking & Finance  26, 1443–1471.

    Article  Google Scholar 

  • Rockafellar, R. T., S. Uryasev, and M. Zabarankin (2002). Deviation measures in risk analysis and optimization. Research Report 2002-7, Department of Industrial and Systems Engineering, University of Florida.

    Google Scholar 

  • Rockafellar, R. T., S. Uryasev, and M. Zabarankin (2006). Generalised deviations in risk analysis. Finance and Stochastics  10, 51–74.

    Article  Google Scholar 

  • Roman, D., K. Darby-Dowman, and G. Mitra (2006). Portfolio construction based on stochastic dominance and target return distributions. Mathematical Programming  Series B  108, 541–569.

    Article  Google Scholar 

  • Ross, S.M. (2002). An Elementary Introduction to Mathematical Finance.  Cambridge University Press, Cambridge.

    Google Scholar 

  • Rudolf, G. and A. Ruszczyński (2008). Optimization problems with second order stochastic dominance constraints: duality, compact formulations, and cut generation methods. SIAM Journal on Optimization  19, 1326–1343.

    Article  Google Scholar 

  • Ruszczyński, A. (1986). A Regularized Decomposition Method for Minimizing the Sum of Polyhedral Functions. Mathematical Programming  35, 309–333.

    Article  Google Scholar 

  • Ruszczyński, A. and A. Shapiro (2006). Optimization of convex risk functions. Mathematics of Operations Research  31, 433–452.

    Article  Google Scholar 

  • Topaloglou, N., H. Vladimirou, and S. Zenios (2008). A dynamic stochastic programming model for international portfolio management. European Journal of Operational Research  185, 1501–1524.

    Article  Google Scholar 

  • Sklar A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Universit de Paris  1959/8, 229–231.

    Google Scholar 

  • Whitmore, G.A. and M.C. Findlay (1978). Stochastic Dominance: An Approach to Decision- Making Under Risk.  D.C.Heath, Lexington, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba I. Fábián .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fábián, C.I. et al. (2011). Portfolio Choice Models Based on Second-Order Stochastic Dominance Measures: An Overview and a Computational Study. In: Bertocchi, M., Consigli, G., Dempster, M. (eds) Stochastic Optimization Methods in Finance and Energy. International Series in Operations Research & Management Science, vol 163. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9586-5_18

Download citation

Publish with us

Policies and ethics