Skip to main content

Image Coding Using Artificial Neural Networks

  • Chapter
Digital Signal Processing in Telecommunications

Abstract

The problem of image compression has been recently studied in a variety of different ways. Many approaches, however, are based either on transform coding techniques or on vector quantization; both of these methods essentially exploit the correlation which is generally present between close pixels in natural images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Abbas and M. M. Fahmy, “Neural model for Karhunen-Loeve transform with application to adaptive image compression,”IEE Proceedings-I, vol. 140, pp. 135–143, Apr. 1993.

    Google Scholar 

  2. S. C. Ahalt, “Vector quantization using artificial neural networks models,” inProc. First COST #229 WG.2 Workshop, (Bayona, Spain), pp. 111–130, March 1991.

    Google Scholar 

  3. F. Arduini, S. Fioravanti, and D. D. Giusto, “Adaptive image coding using multilayer neural networks,” inProc. IEEE Int. Conf. Acoust, Speech, Signal Processing, (San Francisco), pp. II–381–II–384, March 1992.

    Google Scholar 

  4. P. Baldi and K. Hornik, “Neural networks and principal component analysis: learning from examples without local minima,”Neural Networks, vol. 2, pp. 53–58, 1989.

    Article  Google Scholar 

  5. H. Bauer and K. R. Pawelzik, “Quantifying the neighborhood preservation of Self-Organizing Feature Maps,”IEEE Trans. on Neural Networks, vol. 3, pp. 570–578, July 1992.

    Article  Google Scholar 

  6. M. E. Blain and T. R. Fisher, “A comparison of vector quantization techniques in transform and subband coding of imagery,”Signal Processing: Image Communication, vol. 3, pp. 91–105, 1991.

    Article  Google Scholar 

  7. H. Bourlard and Y. Kamp, “Auto -association by multilayer perceptrons and singular value decomposition,”Biological Cybernetics, vol. 59, pp. 291–294, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Cammarota and G. Poggi, “Address predictive vector quantization of images,” inProc. AEI Symposium on Image Processing: Applications and Trends, (Genova, Italy), pp. 67–74, June 1991.

    Google Scholar 

  9. F. Campbell and J. Kulikowski, “Orientation selectivity of the human visual system,”J. Physiol., vol. 197, pp. 437–441, 1966.

    Google Scholar 

  10. S. Carrato, A. Premoli, and G. L. Sicuranza, “Linear and nonlinear neural networks for image compression,” inProc. 1991 International Conference on Digital Signal Processing, (Florence, Italy), pp. 526–531, Sept. 1991.

    Google Scholar 

  11. S. Carrato, G. Ramponi, A. Premoli, and G. L. Sicuranza, “Improved structures based on neural networks for image compression,” inProc. 1991 IEEE Workshop on Neural Networks for Signal Processing, (Princeton, New Jersey), pp. 493–502, Sept. 1991.

    Chapter  Google Scholar 

  12. S Carrato, “Transform–based image compression optimized for some characteristics of the human visual system,” inSystems and Networks: Mathematical Theory and Applications, Proceedings of MTNS’93, (Berlin, Germany), pp. 635–640, Akademie Verlag GmbH, 1994

    Google Scholar 

  13. S Carrato, GL Sicuranza, and L Manzo, “Application of ordered codebooks to image coding,” inProc. 1993 IEEE-SP Workshop on Neural Networks for Signal Processing, (Linthicum Heights, MD, USA), pp. 291–300, Sept. 1993

    Google Scholar 

  14. P. Comon, “Independent component analysis,” inProc. International Signal Processing Workshop on Higher-Order Statistics, (Chamrousse, France), pp. 111–120, July 1991.

    Google Scholar 

  15. P. Comon, “Independent component analysis, a new concept?,”Signal Processing, vol. 36, pp. 287–314, 1994.

    Article  MATH  Google Scholar 

  16. G. W. Cottrell, P. Munro, and D. Zipser, “Image compression by back propagation: an example of extensional programming,” inModels of cognition: a review of cognition science, ( N. E. Sharkey, ed.), NJ: Norwood, 1989.

    Google Scholar 

  17. D. DeMers and G. Cottrell, “Non-linear dimensionality reduction,” inAdvances in Neural Information Processing Systems 5, ( C. L. Giles, S. J. Hanson, and J. D. Cowan, eds.), San Mateo: Morgan Kaufmann, 1993.

    Google Scholar 

  18. K. I. Diamantaras and S. Y. Kung, “Compressing moving pictures using the APEX neural principal component extractor,” inProc. 1993 IEEE Workshop on Neural Networks for Signal Processing, (Linthicum Heights, MD), pp. 321–330, Sept. 1993.

    Chapter  Google Scholar 

  19. N. Farvardin, “A study of vector quantization for noisy channels,”IEEE Trans. Inform. Theory, vol. 36, pp. 799–809, July 1990.

    Article  MathSciNet  Google Scholar 

  20. S. Fioravanti and D. D. Giusto, “Exploitation of a neural structure for improving vector quantization performances,” inProc. COST 229 WG1+2 Workshop, (Bayona, Spain), pp. 237–244, June 1993.

    Google Scholar 

  21. P. Foldiak, “Adaptive network for optimal linear feature extraction,” in IJCNN, (Washington DC), pp. I–401–I–406, 1989.

    Google Scholar 

  22. J. E. Fowler and S. C. Ahalt, “Robust, variable bit–rate coding using entropy-biased codebooks,” inProc. IEEE Data Compression Conference, (Los Alamitos, CA), pp. 361–370, 1993.

    Google Scholar 

  23. B. Fritzke, “Vector quantization with a growing and splitting elastic net,” inProc. ICANN’93, ( Amsterdam, The Netherlands ), Sept. 1993.

    Google Scholar 

  24. J.J. Gerbrands, “On the relationships between SVD, KLT, and PCA,”Pattern Recognition, vol. 14, pp. 375–381, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  25. ISO/IEC, “Coding of moving pictures and associated audio,” ISO/IEC JTC 1/SC 29 WG 11, MPEG 92/No 245, July 1992.

    Google Scholar 

  26. A. K. Jain,Fundamentals of digital image processing. Englewood Cliffs, NJ: Prentice -Hall International, Inc., 1989.

    MATH  Google Scholar 

  27. J. Joutsensalo and J. Karhunen, “Nonlinear multilayer principal component type subspace learning algorithms,” inProc. 1993 IEEE–SP Workshop on Neural Networks for Signal Processing, (Linthicum Heights, MD, USA), pp. 68–77, Sept. 1993.

    Chapter  Google Scholar 

  28. C. Jutten and J. Herault, “Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture,”Signal Processing, vol. 24, pp. 1–10, 1991.

    Article  MATH  Google Scholar 

  29. C. Jutten and J. Herault, “Independent Components Analysis (INCA) versus Principal Component Analysis,” inSignal processing IV: Theories and Applications, (J. L. Lacoume, A. Chehikian, N. Martin, and J. Malbos, eds. ), Elsevier Science Publishers B. V., 1988.

    Google Scholar 

  30. T. Kohonen,Self -organization and associative memory. Berlin: Springer-Verlag, 1984.

    MATH  Google Scholar 

  31. A. K. Krishnamurthy, S. C. Ahalt, D. E. Melton, and P. Chen, “Neural network for vector quantization of speech and images,”IEEE Journal on Selected Areas in Communications, vol. 8, pp. 1449–1457, Oct. 1990.

    Article  Google Scholar 

  32. S. Y. Kung and K. I. Diamantaras, “A neural network learning algorithm for adaptive principal component extraction (APEX),” inProc. Int. Conf. on Acoustics, Speech, and Signal Processing, (Albuquerque, NM), pp. 861–864, Apr. 1990.

    Chapter  Google Scholar 

  33. Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,”IEEE Trans. Commun., vol. COM-28, pp. 84–95, Jan. 1980.

    Article  Google Scholar 

  34. R. P. Lippmann, “An introduction to computing with neural nets,”IEEE ASSP Magazine, pp. 4–21, Apr. 1987.

    Google Scholar 

  35. S. Marsi, G. Ramponi, and G. L. Sicuranza, “Improved neural structures for image compression,” inProc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 2821–2824, May 1991.

    Google Scholar 

  36. S. Marsi and G. L. Sicuranza, “Neural networks for compression of image sequences,” inProc. 4th International Workshop on Time-Varying Image Processing and Moving Object Recognition, (Florence, Italy), June 1993.

    Google Scholar 

  37. G. Martinelli, L. P. Ricotti, and G. Marcone, “Neural clustering for optimal KLT image compression,”IEEE Trans, on Signal Processing, vol. 41, pp. 1737–1739, Apr. 1993.

    Article  Google Scholar 

  38. W. Meier and H. von Stein, “Infrared image enhancement with nonlinear spatio-temporal filtering,” inProc. EUSIPCO-92, (Brussels, Belgium), pp. 1397–1400, Aug. 1992.

    Google Scholar 

  39. M. Mougeot, R. Azencott, and B. Angeniol, “Image compression with back propagation: improvement of the visual restoration using different cost functions,”Neural Networks, vol. 4, pp. 467–476, 1991.

    Article  Google Scholar 

  40. M. Mougeot and R. Barrow, “From static to dynamic image compression,” inProc. INNC 90, (Paris), pp. 59–62, July 1990.

    Google Scholar 

  41. H. Niemann and J. Wu, “Neural network adaptive image coding,”IEEE Trans, on Neural Networks, vol. 4, pp. 615–627, 1993.

    Article  Google Scholar 

  42. E. Oja, “Data compression, feature extraction, and autoassociation in feedforward neural networks,” inArtificial Neural Networks, (T. Kohonen, K. Makisara, O. Simula, and J. Kangas, eds. ), Elsevier Science Publisher B.V. — North-Holland, 1991.

    Google Scholar 

  43. E. Oja, “A simplified neuron model as a principal component analyzer,”J. Math Biology, vol. 15, pp. 267–273, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  44. E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix,”J. of Mathematical Analysis and Applications, vol. 106, pp. 69–84, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  45. E. Oja, H. Ogawa, and J. Wangviwattana, “Learning in nonlinear constrained hebbian networks,” inArtificial Neural Networks, ( T. Kohonen, K. Makisara, O. Simula, and J. Kangas, eds.), Amsterdam: Elsevier Science Publishers B.V., 1991.

    Google Scholar 

  46. E. Oja, H. Ogawa, and J. Wangviwattana, “PCA in fully parallel neural networks,” inArtificial Neural Networks,2, (I. Aleksander and J. Taylor, eds. ), Elsevier Science Publisher B. V., 1992.

    Google Scholar 

  47. E. Oja, H. Ogawa, and J. Wangviwattana, “Principal component analysis by homogeneous neural networks, part II: analysis and extensions of the learning algorithms”IEICE Trans, on Information and Systems vol. E75-D, pp. 376–382, May 1992.

    Google Scholar 

  48. G. Poggi, “Address-predictive vector quantization of images by topology-preserving codebook ordering,”ETT, vol. 4, pp. 423–434, July-August 1993.

    Google Scholar 

  49. L. E. Russo, “An outer product neural network for extracting principal components from a time series,” inProc. 1991 IEEE Workshop on Neural Networks for Signal Processing, (Princeton, N.J., U.S.A.), pp. 161–170, Sept. 1991.

    Chapter  Google Scholar 

  50. FM Salam, “An adaptive network for blind separation of indepentent signals,” inProc. ISCAS-93, pp. 431–434, 1993

    Google Scholar 

  51. T. D. Sanger, “An optimality principle for unsupervised learning,” inAdvances in Neural Information Processing Systems, I, (D. S. Touretzky, ed.).

    Google Scholar 

  52. G. Sartori, S. Carrato, and G. L. Sicuranza, “Linear neural networks with hierarchical structures for image compression,” inProc. 4th Italian Workshop on Parallel Architectures and Neural Networks, (Vietri sul Mare, Salerno, Italy), pp. 255–262, May 1991.

    Google Scholar 

  53. L Schweizer, G Parladori, and GL Sicuranza, “Globally trained neural network architecture for image compression,” inProc. 1992 IEEE Workshop on Neural Networks for Signal Processing, (Copenhagen), pp. 382–390, Aug. 1992

    Google Scholar 

  54. L. Schweizer, G. Parladori, G. L. Sicuranza, and S. Marsi, “A fully neural approach to image compression,” inProc. ICANN-91, (Espoo, Finland), pp. 815–820, June 1991.

    Google Scholar 

  55. G. L. Sicuranza, G. Ramponi, and S. Marsi, “Artificial neural network for image compression,”Electronics Letters, vol. 26, pp. 477–478, March 1990.

    Article  Google Scholar 

  56. N. Sonehara, M. Kawato, S. Miyake, and K. Nakane, “Image data compression using a neural network model,” inProc. IJCNN, (Washington DC), pp. II–35–II–41, 1989.

    Google Scholar 

  57. L. Torres-Urgell and R. L. Kirlin, “Adaptive image compression using Karhunen-Loeve transform,”Signal Processing, vol. 21, pp. 303–313, Dec. 1990.

    Article  Google Scholar 

  58. D. Tzovaras, M. G. Strintzis, and I. Pitas, “Image coding using nonlinear principal component analysis and vector quantization,” inProc. ISSSE-92, ( Paris ), Sept. 1992.

    Google Scholar 

  59. K. Zeger and A. Gersho, “Pseudo-Gray coding,”IEEE Trans. Commun., vol. 38, pp. 2147–2158, Dec. 1990.

    Article  Google Scholar 

  60. K. Zeger, J. Vasey, and A. Gersho, “Globally optimal vector quantizer design by stochastic relaxation,”IEEE Trans. on Signal Processing, vol. 40, pp. 310–322, Feb. 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag London Limited

About this chapter

Cite this chapter

Carrato, S., Marsi, S., Ramponi, G., Sicuranza, G.L. (1996). Image Coding Using Artificial Neural Networks. In: Figueiras-Vidal, A.R. (eds) Digital Signal Processing in Telecommunications. Springer, London. https://doi.org/10.1007/978-1-4471-1019-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-1019-4_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-76037-5

  • Online ISBN: 978-1-4471-1019-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics