Skip to main content

An Overview of Tuning Rules for the PI and PID Continuous-Time Control of Time-Delayed Single-Input, Single-Output (SISO) Processes

  • Chapter
PID Control in the Third Millennium

Part of the book series: Advances in Industrial Control ((AIC))

Abstract

The ability of PI and PID controllers to compensate many practical processes has led to their wide acceptance in industrial applications. The requirement to choose two or three controller parameters is most easily done using tuning rules. Starting with a general discussion of industrial practice, the chapter will provide an outline of tuning rules for continuous-time PI and PID control of time-delayed single-input, single-output (SISO) processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ABB: Operating Guide for Commander 300/310, Sect. 7 (1996)

    Google Scholar 

  2. ABB: Instruction manual for 53SL6000. Document: PN24991.pdf (2001). Available at www.abb.com. Cited 1 September 2004

  3. Abbas, A.: A new set of controller tuning relations. ISA Trans. 36, 183–187 (1997)

    Article  Google Scholar 

  4. Aikman, A.R.: The frequency response approach to automatic control problems. Trans. Soc. Instrum. Technol. 2–16 (1950)

    Google Scholar 

  5. Alcántara, S., Pedret, C., Vilanova, R., Zhang, W.D.: Setpoint-oriented robust PID tuning from a simple min-max model matching specification. In: Proc. IEEE Conference on Emerging Technologies and Factory Automation, Mallorca, Spain, pp. 1–8 (2009)

    Chapter  Google Scholar 

  6. Alcántara, S., Pedret, C., Vilanova, R.: On the model matching approach to PID design: analytical perspective for robust servo/regulator tradeoff tuning. J. Process Control 20, 596–608 (2010)

    Article  Google Scholar 

  7. Alenany, A., Abdelrahman, O., Ziedan, I.: Simple tuning rules of PID controllers for integrator/dead time processes. In: Proc. International Conference for Global Science and Technol., Cairo, Egypt (2005). Available at www.icgst.com/ACSE05/papers/P1110504001.pdf. Cited 4 January 2011

    Google Scholar 

  8. Alfaro, V.M.: Actualización del método de sintonización de controladores de Ziegler y Nichols. Ingénierie 15(1–2), 39–52 (2005) (in Spanish)

    Google Scholar 

  9. Alfaro, V.M.: Estimación del desempeño IAE de los reguladores y servomecanismos PID. Ingénierie 15(1), 79–90 (2005) (in Spanish)

    Google Scholar 

  10. Alfaro, V.M.: Analytical robust tuning of two-degree-of-freedom PI and PID controllers (ART2) (2007). Available at http://www2.eie.ucr.ac.cr/~valfaro/docs/vma.art2.pdf. Cited 30 March 2009

  11. Alfaro, V.M., Vilanova, R., Arrieta, O.: Analytical robust tuning of PI controllers for first-order-plus-dead-time processes. In: Proc. IEEE International Conference on Emerging Technologies and Factory Automation, Hamburg, Germany, pp. 273–280 (2008)

    Chapter  Google Scholar 

  12. Alfaro, V.M., Vilanova, R., Arrieta, O.: Two-degree-of-freedom PI/PID controller tuning approach for smooth control on cascade control systems. In: Proc. 47th IEEE Conference on Decision and Control, Mexico, pp. 5680–5685 (2008)

    Chapter  Google Scholar 

  13. Alfaro, V.M., Vilanova, R., Arrieta, O.: Robust tuning of two-degree-of-freedom (2-DoF) PI/PID based cascade control systems. J. Process Control 19, 1658–1670 (2009)

    Article  Google Scholar 

  14. Alfaro, V.M., Vilanova, R., Arrieta, O.: NORT: a non-oscillatory robust tuning approach for 2-DoF PI controllers. In: Proc. 18th IEEE International Conference on Control Applications, St. Petersburg, Russia, pp. 1003–1008 (2009)

    Google Scholar 

  15. Alfaro, V.M., Vilanova, R., Arrieta, O.: Maximum sensitivity based robust tuning for two-degree-of-freedom proportional-integral controllers. Ind. Eng. Chem. Res. 49(11), 5415–5423 (2010)

    Article  Google Scholar 

  16. Ali, A., Majhi, S.: PI/PID controller design based on IMC and percentage overshoot specification to controller setpoint change. ISA Trans. 48, 10–15 (2009)

    Article  Google Scholar 

  17. Ali, A., Majhi, S.: Controller design for unstable FOPTD plants based on sensitivity. In: Proc. IFAC World Congress, Seoul, Korea, pp. 5837–5841 (2009)

    Google Scholar 

  18. Ali, A., Majhi, S.: PID controller tuning for integrating processes. ISA Trans. 49, 70–78 (2010)

    Article  Google Scholar 

  19. Alvarez-Ramirez, J., Morales, A., Cervantes, I.: Robust proportional-integral control. Ind. Eng. Chem. Res. 37, 4740–4747 (1998)

    Article  Google Scholar 

  20. Andersson, M.: A MATLAB tool for rapid process identification and PID design. MSc thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden (2000)

    Google Scholar 

  21. Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design and technology. IEEE Trans. Control Syst. Technol. 13, 559–576 (2005)

    Article  Google Scholar 

  22. Anil, C., Sree, R.P.: Design of PID controllers for FOPTD systems with an integrator and with/without a zero. Indian Chem. Eng., Sect. A 47(4), 235–242 (2005)

    Google Scholar 

  23. Araki, M.: 2-degree of freedom control system. Syst. Control 29, 649–656 (1985) (in Japanese)

    MathSciNet  Google Scholar 

  24. Arbogast, J.E., Cooper, D.J.: Extension of IMC tuning correlations for non-self regulating (integrating) processes. ISA Trans. 46, 303–311 (2007)

    Article  Google Scholar 

  25. Arbogast, J.E., Cooper, D.J., Rice, R.C.: Model-based tuning methods for PID controllers (2006). Available at http://www.bin95.com/Model-Based%20Tuning%20Methods%20for%20PID%20Controllers-2.pdf. Cited 4 January 2011

  26. Argelaguet, R., Pons, M., Martin Aguilar, J., Quevedo, J.: A new tuning of PID controllers based on LQR optimization. In: Proc. European Control Conference, Brussels, Belgium (1997). Available at www.cds.caltech.edu/conferences/related/ECC97/proceeds/251_500/ECC486.pdf. Cited 4 January 2011

    Google Scholar 

  27. Argelaguet, R., Pons, M., Quevedo, J., Aguilar, J.: A new tuning of PID controllers based on LQR optimization. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, pp. 303–308 (2000)

    Google Scholar 

  28. Arrieta, O.: Comparación del desempeño de los métodos de sintonización de controladores PI y PID basados en criterios integrales. Proyecto Eléctrico, Universidad de Costa Rica (2003). Available at http://www2.eie.ucr.ac.cr/~oarrieta/proyecto_%20Tesis_%20Licenciatura.pdf. Cited 6 September 2006 (in Spanish)

  29. Arrieta, O.: PID control: servo/regulation performance and robustness issues. PhD thesis, Universitat Autònoma de Barcelona, September (2010)

    Google Scholar 

  30. Arrieta, O.: Sintonización de controladores PI y PID empleando un índice de desempeño de criterio múltiple. Dissertation, Licenciado en Ingeniería Eléctrica, Universidad de Costa Rica (2006). Available at http://www2.eie.ucr.ac.cr/~oarrieta/Tesis_Licenciatura.pdf. Cited 4 January 2011 (in Spanish)

  31. Arrieta, O., Alfaro, V.M.: Sintonización de controladores PI y PID utilizando los criterios integrales IAE e ITAE. Ingénierie 13(1–2), 31–39 (2003). Available at http://www2.eie.ucr.ac.cr/~oarrieta/oarrieta_valfaro03.pdf. Cited 4 January 2011 (in Spanish)

    Google Scholar 

  32. Arrieta, O., Vilanova, R.: PID autotuning settings for balanced servo/regulation operation. In: Proc. 15th Mediterranean Conference on Control and Automation, Athens, Greece (2007), paper T028-015

    Google Scholar 

  33. Arrieta, O., Visioli, A., Vilanova, R.: Improved PID autotuning for balanced control operation. In: Proc. IEEE Conference on Emerging Technologies and Factory Automation, Mallorca, Spain, pp. 1–8 (2009)

    Chapter  Google Scholar 

  34. Arrieta, O., Visioli, A., Vilanova, R.: PID autotuning for weighted servo/regulator control operation. J. Process Control 20, 472–480 (2010)

    Article  Google Scholar 

  35. Arrieta, O., Vilanova, R., Visioli, A.: Proportional-Integral-Derivative tuning for servo/regulation control operation for unstable and integrating processes. Ind. Eng. Chem. Res. 50(6), 3327–3334 (2011)

    Article  Google Scholar 

  36. Arvanitis, K.G., Akritidis, C.B., Pasgianos, G.D., Sigrimis, N.A.: Controller tuning for second order dead-time fertigation mixing process. In: Proc. EurAgEng Conference on Agricultural Engineering (2000). Paper No 00-AE-011

    Google Scholar 

  37. Arvanitis, K.G., Sigrimis, N.A., Pasgianos, G.D., Kalogeropoulos, G.: On-line controller tuning for unstable processes with application to a biological reactor. In: Proc. IFAC Conference on Modelling and Control in Agriculture, Horticulture and Post-Harvest Processing, Waneningen, The Netherlands, pp. 191–196 (2000)

    Google Scholar 

  38. Arvanitis, K.G., Syrkos, G., Stellas, I.Z., Sigrimis, N.A.: Controller tuning for integrating processes with time delay. Part I: IPDT processes and the pseudo-derivative feedback control configuration. In: Proc. 11th Mediterranean Conference on Control and Automation (2003). Paper No. T7-040

    Google Scholar 

  39. Arvanitis, K.G., Syrkos, G., Stellas, I.Z., Sigrimis, N.A.: Controller tuning for integrating processes with time delay. Part III: The case of first order plus integral plus dead-time processes. In: Proc. 11th Mediterranean Conference on Control and Automation (2003). Paper No. T7-042

    Google Scholar 

  40. Åström, K.J.: Ziegler–Nichols auto-tuner. Report TFRT–3167, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden (1982)

    Google Scholar 

  41. Åström, K.J.: Tuning and adaptation. In: Proc. IFAC World Congress, San Francisco, USA, pp. 1–18 (1996). Plenary Volume

    Google Scholar 

  42. Åström, K.J., Hägglund, T.: Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20, 645–651 (1984)

    Article  MATH  Google Scholar 

  43. Åström, K.J., Hägglund, T.: Automatic Tuning of PID Controllers. Instrument Society of America, North Carolina, USA (1988)

    Google Scholar 

  44. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design and Tuning. Instrument Society of America, North Carolina, USA (1995)

    Google Scholar 

  45. Åström, K.J., Hägglund, T.: The future of PID control. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 19–30 (2000)

    Google Scholar 

  46. Åström, K.J., Hägglund, T.: Benchmark systems for PID control. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 181–182 (2000)

    Google Scholar 

  47. Åström, K.J., Hägglund, T.: Revisiting the Ziegler–Nichols step response method for PID control. J. Process Control 14, 635–650 (2004)

    Article  Google Scholar 

  48. Åström, K.J., Hägglund, T.: Advanced PID control. Instrument Society of America, North Carolina, USA (2006)

    Google Scholar 

  49. Åström, K.J., Hägglund, T., Hang, C.C., Ho, W.K.: Automatic tuning and adaptation for PID controllers—a survey. Control Eng. Pract. 1, 699–714 (1993)

    Article  Google Scholar 

  50. Åström, K.J., Lee, T.H., Tan, K.K., Johansson, K.H.: Recent advances in relay feedback methods—a survey. In: Proc. IEEE International Conference on Syst., Man, Cybernetics, Vancouver, British Columbia, pp. 2616–2621 (1995)

    Google Scholar 

  51. Atherton, D.P., Boz, A.F.: Using standard forms for controller design. In: Proc. UKACC International Conference on Control, Swansea, UK, pp. 1066–1071 (1998)

    Chapter  Google Scholar 

  52. Atherton, D.P., Majhi, S.: Tuning of optimum PIPD controllers. In: Proc. Third Portuguese Conference on Automatic Control, Coimbra, Portugal, pp. 549–554 (1998)

    Google Scholar 

  53. Atkinson, P.: Feedback Control Theory for Engineers. Heinemann, London (1968)

    Google Scholar 

  54. Auslander, D.M., Takahashi, Y., Tomizuka, M.: The next generation of single loop controllers: hardware and algorithms for the discrete/decimal process controller. Trans. ASME J. Dyn. Syst. Meas. Control 97(3), 280–282 (1975)

    Article  Google Scholar 

  55. Bai, J., Zhang, X.: A new adaptive PI controller and its application in HVAC systems. Energy Convers. Manag. 48, 1043–1054 (2007)

    Article  MathSciNet  Google Scholar 

  56. Bain, D.M., Martin, G.D.: Simple PID tuning and PID closed-loop simulation. In: Proc. American Control Conference, pp. 338–342 (1983)

    Google Scholar 

  57. Barberà, E.: First order plus dead-time (FOPDT) processes: a new procedure for tuning PI and PID controllers (2006). Available at http://www.angel.qui.ub.es/abstracts/T10-004.pdf. Cited 9 May 2006

  58. Bateson, N.: Introduction to Control System Technology. Prentice-Hall, New York (2002)

    Google Scholar 

  59. Bekker, J.E., Meckl, P.H., Hittle, D.C.: A tuning method for first-order processes with PI controllers. ASHRAE Trans. 97(2), 19–23 (1991)

    Google Scholar 

  60. Belanger, P.W., Luyben, W.L.: Design of low-frequency compensators for improvement of plantwide regulatory performances. Ind. Eng. Chem. Res. 36, 5339–5347 (1997)

    Article  Google Scholar 

  61. Benjanarasuth, T., Ngamwiwit, J., Komine, N., Ochiai, Y.: CDM based two-degree of freedom PID controllers tuning formulas. Proc. Sch. Inf. Technol. Electron. Tokai Univ., Ser. E 30, 53–58 (2005). Available at http://ci.nii.ac.jp/vol_issue/nels/AA11898836/ISS0000391486_jp.html. Cited 4 January 2011

    Google Scholar 

  62. Bequette, B.W.: Process Control: Modeling, Design and Simulation. Pearson Education, New Jersey (2003)

    Google Scholar 

  63. Bi, Q., Cai, W.-J., Lee, E.-L., Wang, Q.-G., Hang, C.-C., Zhang, Y.: Robust identification of first-order plus dead-time model from step response. Control Eng. Pract. 7, 71–77 (1999)

    Article  Google Scholar 

  64. Bi, Q., Cai, W.-J., Wang, Q.-G., Hang, C.-C., Lee, E.-L., Sun, Y., Liu, K.-D., Zhang, Y., Zou, B.: Advanced controller auto-tuning and its application in HVAC systems. Control Eng. Pract. 8, 633–644 (2000)

    Article  Google Scholar 

  65. Bialkowski, W.L.: Control of the pulp and paper making process. In: Levine, W.S. (ed.) The Control Handbook, pp. 1219–1242. CRC/IEEE Press, Boca Raton (1996)

    Google Scholar 

  66. Blickley, G.J.: Modern control started with Ziegler–Nichols tuning. Control Eng. 2, 11–17 (1990)

    Google Scholar 

  67. Boe, E., Chang, H.-C.: Dynamics and tuning of systems with large delay. In: Proc. American Control Conference, pp. 1572–1578 (1988)

    Google Scholar 

  68. Bohl, A.H., McAvoy, T.J.: Linear feedback vs. time optimal control. II. The regulator problem. Ind. Eng. Chem. Process Des. Dev. 15, 30–33 (1976)

    Article  Google Scholar 

  69. Boiko, I.M.: Non-parametric tuning of PID controllers via modified second-order sliding mode algorithms. In: Proc. IFAC World Congress, Seoul, Korea, pp. 6214–6219 (2008)

    Google Scholar 

  70. Boiko, I.M.: Modified relay feedback test and its use for non-parametric loop tuning. In: Proc. American Control Conference, St. Louis, USA, pp. 4755–4760 (2008)

    Google Scholar 

  71. Boiko, I., Sun, X., Tamayo, E.: Performance analysis and tuning of variable-structure PID controllers for level process. In: Proc. 18th IEEE Conference on Control Applications, St. Petersburg, Russia, pp. 268–273 (2009)

    Google Scholar 

  72. Borresen, B.A., Grindal, A.: Controllability—back to basics. ASHRAE Trans. Res., 817–819 (1990)

    Google Scholar 

  73. Boudreau, M.A., McMillan, G.K.: New directions in bioprocess modelling and control: Appendix C—unification of controller tuning relationships (2006). Available at http://www.modelingandcontrol.com/NewDirectionsAppendixC.pdf. Cited 4 January 2011

  74. Brambilla, A., Chen, S., Scali, C.: Robust tuning of conventional controllers. Hydrocarb. Process. 53–58 (1990)

    Google Scholar 

  75. Branica, I., Petrović, I., Perić, N.: Toolkit for PID dominant pole design. In: Proc. 9th IEEE Conference on Electronics, Circuits and Syst., vol. 3, pp. 1247–1250 (2002)

    Chapter  Google Scholar 

  76. Bryant, G.F., Iskenderoglu, E.F., McClure, C.H.: Design of controllers for time delay systems. In: Bryant, G.F. (ed.) Automation of Tandem Mills, pp. 81–106. The Iron and Steel Institute, London (1973)

    Google Scholar 

  77. Buckley, P.S.: Techniques of Process Control. Wiley, New York (1964)

    Google Scholar 

  78. Buckley, P., Shunta, J., Luyben, W.: Design of distillation column control systems. Butterworth-Heinemann, London (1985)

    Google Scholar 

  79. Bucz, Š., Marič, L., Harsányi, L., Veselý, V.: A simple robust PID controller design method based on sine wave identification of the uncertain plant. J. Electr. Eng. 61(3), 164–170 (2010)

    Article  Google Scholar 

  80. Bueno, S.S., De Keyser, R.M.C., Favier, G.: Auto-tuning and adaptive tuning of PID controllers. J. A, Benelux Q. J. Autom. Control 32(1), 28–34 (1991)

    Google Scholar 

  81. Bunzemeier, A.: Ein vorschlag zur regelung integral wirkender prozesse mit eingangsstorung. Autom.tech. Prax. 40, 26–35 (1998) (in German)

    Google Scholar 

  82. Byeon, J., Kim, J.-S., Chun, D., Sung, S.W., Lee, J.: Third quadrant Nyquist point for the autotuning of PI controllers. In: Proc. ICROS-SICE International Joint Conference, Fukuoka, Japan, pp. 3283–3286 (2009)

    Google Scholar 

  83. Calcev, G., Gorez, R.: Iterative techniques for PID controller tuning. In: Proc. 34th Conference on Decision and Control, New Orleans, USA, pp. 3209–3210 (1995)

    Google Scholar 

  84. Callender, A.: Preliminary notes on automatic control. I.C.I. Alkali Ltd., Northwich, UK, Central File No. R.525/15/3 (1934)

    Google Scholar 

  85. Callender, A., Stevenson, A.B.: Automatic control of variable physical characteristics. US patent 2,175,985 (1939)

    Google Scholar 

  86. Callender, A., Hartree, D.R., Porter, A.: Time-lag in a control system. Philos. Trans. R. Soc. Lond. Ser. A 235, 415–444 (1935/1936)

    Article  Google Scholar 

  87. Camacho, O.E., Smith, C., Chacón, E.: Toward an implementation of sliding mode control to chemical processes. In: Proc. IEEE International Symposium on Industrial Electronics, Guimarães, Portugal, vol. 3, pp. 1101–1105 (1997)

    Google Scholar 

  88. Carr, D.: AN-CNTL-13: PID control and controller tuning techniques (1986). Available at http://www.eurotherm.com/training/tutorial/instrumentation/an13_2.doc. Cited 3 September 2004

  89. Chandrashekar, R., Sree, R.P., Chidambaram, M.: Design of PI/PID controllers for unstable systems with time delay by synthesis method. Indian Chem. Eng. Sect. A 44(2), 82–88 (2002)

    Google Scholar 

  90. Chang, D.-M., Yu, C.-C., Chien, I.-L.: Identification and control of an overshoot lead-lag plant. J. Chin. Inst. Chem. Eng. 28, 79–89 (1997)

    Google Scholar 

  91. Chao, H., Luo, Y., Di, L., Chen, Y.Q.: Roll-channel fractional order controller design for a small fixed-wing unmanned aerial vehicle. Control Eng. Pract. 18, 761–772 (2010)

    Article  Google Scholar 

  92. Chao, Y.-C., Lin, H.-S., Guu, Y.-W., Chang, Y.-H.: Optimal tuning of a practical PID controller for second order processes with delay. J. Chin. Inst. Chem. Eng. 20, 7–15 (1989)

    Google Scholar 

  93. Chau, P.C.: Process Control—A First Course with MATLAB. Cambridge University Press, New York (2002)

    Google Scholar 

  94. Chen, G.: Conventional and fuzzy PID controllers: an overview. Int. J. Intell. Control Syst. 1, 235–246 (1996)

    Article  MathSciNet  Google Scholar 

  95. Chen, D., Seborg, D.E.: PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res. 41, 4807–4822 (2002)

    Article  Google Scholar 

  96. Chen, Y., Won, S.: Simple fuzzy PID controller tuning of integrating process with dead time. In: Proc. International Conference on Control, Automation and Syst., Seoul, Korea, pp. 618–622 (2008)

    Chapter  Google Scholar 

  97. Chen, F., Yang, Z.: Self-tuning PM method and its formulas deduction in PID regulators. Acta Autom. Sin. 19(6), 736–740 (1993) (in Chinese)

    Google Scholar 

  98. Chen, C.-L., Yang, S.-F.: PI tuning based on peak amplitude ratio. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 195–198 (2000)

    Google Scholar 

  99. Chen, C.-L., Huang, H.-P., Lo, H.-C.: Tuning of PID controllers for self-regulating processes. J. Chin. Inst. Chem. Eng. 28, 313–327 (1997)

    Google Scholar 

  100. Chen, C.-L., Hsu, S.-H., Huang, H.-P.: Tuning PI/PD controllers based on gain/phase margins and maximum closed loop magnitude. J. Chin. Inst. Chem. Eng. 30, 23–29 (1999)

    Google Scholar 

  101. Chen, C.-L., Huang, H.-P., Hsieh, C.-T.: Tuning of PI/PID controllers based on specification of maximum closed-loop amplitude ratio. J. Chem. Eng. Jpn. 32, 783–788 (1999)

    Article  Google Scholar 

  102. Chen, P., Zhang, W., Zhu, L.: Design and tuning method of PID controller for a class of inverse response processes. In: Proc. American Control Conference, Minneapolis, USA, pp. 274–279 (2006)

    Google Scholar 

  103. Chen, C.-C., Huang, H.-P., Liaw, H.-J.: Set-point weighted PID controller tuning for time-delayed unstable processes. Ind. Eng. Chem. Res. 47, 6983–6990 (2008)

    Article  Google Scholar 

  104. Chen, Y., Bhaskaran, T., Xue, D.: Practical tuning rule development for fractional order proportional and integral controllers. J. Comput. Nonlinear Dyn. 3, 021403 (2008)

    Article  Google Scholar 

  105. Cheng, G.S., Hung, J.C.: A least-squares based self-tuning of PID controller. In: Proc. IEEE South East Conference, Raleigh, USA, pp. 325–332 (1985)

    Google Scholar 

  106. Cheng, Y.-C., Yu, C.-C.: Nonlinear process control using multiple models: relay feedback approach. Ind. Eng. Chem. Res. 39, 420–431 (2000)

    Article  Google Scholar 

  107. Chesmond, C.J.: Control System Technology. Edward Arnold, London (1982)

    Google Scholar 

  108. Chidambaram, M.: Design of PI controllers for integrator/dead-time processes. Hung. J. Ind. Chem. 22, 37–39 (1994)

    Google Scholar 

  109. Chidambaram, M.: Design formulae for PID controllers. Indian Chem. Eng. Sect. A 37(3), 90–94 (1995)

    Google Scholar 

  110. Chidambaram, M.: Design of PI and PID controllers for an unstable first-order plus time delay system. Hung. J. Ind. Chem. 23, 123–127 (1995)

    Google Scholar 

  111. Chidambaram, M.: Control of unstable systems: a review. J. Energy Heat Mass Transf. 19, 49–56 (1997)

    Google Scholar 

  112. Chidambaram, M.: Applied Process Control. Allied Publishers PVT, Delhi (1998)

    Google Scholar 

  113. Chidambaram, M.: Set point weighted PI/PID controllers for stable systems. Chem. Eng. Commun. 179, 1–13 (2000)

    Article  Google Scholar 

  114. Chidambaram, M.: Set-point weighted PI/PID controllers for integrating plus dead-time processes. In: Proc. National Symposium on Intelligent Measurement and Control, Chennai, India, pp. 324–331 (2000)

    Google Scholar 

  115. Chidambaram, M.: Set-point weighted PI/PID controllers for unstable first-order plus time delay systems. In: Proc. International Conference on Communications, Control and Signal Processing, Bangalore, India, pp. 173–177 (2000)

    Google Scholar 

  116. Chidambaram, M.: Computer Control of Processes. Alpha Science International, Oxford (2002)

    Google Scholar 

  117. Chidambaram, M., Kalyan, V.S.: Robust control of unstable second order plus time delay systems. In: Proc. International Conference on Advances in Chemical Engineering, Chennai, India, pp. 277–280 (1996)

    Google Scholar 

  118. Chidambaram, M., Sree, R.P.: A simple method of tuning PID controllers for integrator/dead-time processes. Comput. Chem. Eng. 27, 211–215 (2003)

    Article  Google Scholar 

  119. Chidambaram, M., Sree, R.P., Srinivas, M.N.: Reply to the comments by Dr. A. Abbas on “A simple method of tuning PID controllers for stable and unstable FOPTD systems” [Comp. Chem. Engineering V28 (2004) 2201–2218]. Comput. Chem. Eng. 29, 1155 (2005)

    Article  Google Scholar 

  120. Chien, I.-L.: IMC-PID controller design—an extension. In: Proc. IFAC Adaptive Control of Chemical Processes Conference, Copenhagen, Denmark, pp. 147–152 (1988)

    Google Scholar 

  121. Chien, I.-L.: Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time. Ind. Eng. Chem. Res. 42, 4461–4477 (2003)

    Article  Google Scholar 

  122. Chien, I.-L., Fruehauf, P.S.: Consider IMC tuning to improve controller performance. Chem. Eng. Prog. 33–41 (1990)

    Google Scholar 

  123. Chien, I.-L., Huang, H.-P., Yang, J.-C.: A simple multiloop tuning method for PID controllers with no proportional kick. Ind. Eng. Chem. Res. 38, 1456–1468 (1999)

    Article  Google Scholar 

  124. Chien, I.-L., Chung, Y.-C., Chen, B.-S., Chuang, C.-Y.: Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time. Ind. Eng. Chem. Res. 42, 4461–4477 (2003)

    Article  Google Scholar 

  125. Chien, K.L., Hrones, J.A., Reswick, J.B.: On the automatic control of generalised passive systems. Trans. ASME 74, 175–185 (1952)

    Google Scholar 

  126. Chiu, K.C., Corripio, A.B., Smith, C.L.: Digital controller algorithms. Part III. Tuning PI and PID controllers. Instrum. Control Syst. December, 41–43 (1973)

    Google Scholar 

  127. Chun, D., Choi, J.Y., Lee, J.: Parallel compensation with a secondary measurement. Ind. Eng. Chem. Res. 38, 1575–1579 (1999)

    Article  Google Scholar 

  128. Clarke, D.W.: PI auto-tuning during a single transient. IEE Proc., Control Theory Appl. 153(6), 671–683 (2006)

    Article  Google Scholar 

  129. Cluett, W.R., Wang, L.: New tuning rules for PID control. Pulp Pap. Can. 3(6), 52–55 (1997)

    MathSciNet  Google Scholar 

  130. Cogan, B., de Paor, A.M., Quinn, A.: PI control of first-order lag plus time-delay plants: root locus design for optimal stability. Trans. Inst. Meas. Control 31(5), 365–379 (2009)

    Article  Google Scholar 

  131. Cohen, G.H., Coon, G.A.: Theoretical considerations of retarded control. Trans. ASME 75, 827–834 (1953)

    Google Scholar 

  132. Cominos, P., Munro, N.: PID controllers: recent tuning methods and design to specification. IEE Proc., Control Theory Appl. 149(1), 46–53 (2002)

    Article  Google Scholar 

  133. Connell, B.: Process Instrumentation Applications Manual. McGraw-Hill, New York (1996)

    Google Scholar 

  134. ControlSoft Inc.: PID loop tuning pocket guide (Version 2.2, DS405–02/05) (2005). Available at http://www.controlsoftinc.com. Cited 30 June 2005

  135. Coon, G.A.: How to find controller settings from process characteristics. Control Eng. 3, 66–76 (1956)

    Google Scholar 

  136. Coon, G.A.: Control charts for proportional action. ISA J. 11, 81–82 (1964)

    Google Scholar 

  137. Cooper, D.J.: PID control of the heat exchanger (2006). Available at http://www.controlguru.com/wp/p78.html. Cited 4 January 2011

  138. Cooper, D.J.: PID with CO filter control of the heat exchanger (2006). Available at http://www.controlguru.com/wp/p86.html. Cited 4 January 2011

  139. Corripio, A.B.: Tuning of Industrial Control Systems. Instrument Society of America, North Carolina, USA (1990)

    Google Scholar 

  140. Corripio, A.B.: Tuning of Industrial Control Systems. Instrument Society of America, North Carolina, USA (2005)

    Google Scholar 

  141. Cox, C.S., Arden, W.J.B., Doonan, A.F.: CAD software facilities tuning of traditional and predictive control strategies. In: Proc. ISA Advances in Instrumentation and Control Conference, Anaheim, USA, vol. 49, Part 2, pp. 241–250 (1994)

    Google Scholar 

  142. Cox, C.S., Daniel, P.R., Lowdon, A.: Quicktune: a reliable automatic strategy for determining PI and PPI controller parameters using a FOLPD model. Control Eng. Pract. 5, 1463–1472 (1997)

    Article  Google Scholar 

  143. Cuesta, A., Grau, L., López, I.: CACSD tools for tuning multi-rate PID controllers in time and frequency domains. In: Proc. IEEE International Symposium on Computer Aided Control Syst. Design, Munich, Germany, pp. 3036–3041 (2006)

    Google Scholar 

  144. Cvejn, J.: Sub-optimal PID controller settings for FOPDT systems with long dead time. J. Process Control 19, 1486–1495 (2009)

    Article  Google Scholar 

  145. Davydov, N.I., Idzon, O.M., Simonova, O.V.: Determining the parameters of PID-controller settings using the transient response of the controlled plant. Therm. Eng. 42, 801–807 (1995)

    Google Scholar 

  146. De Oliveira, R., Corrêa, R.G., Kwong, W.H.: An IMC-PID tuning procedure based on the integral squared error (ISE) criterion: a guide tour to understand its features. In: Proc. IFAC Workshop on Control Education and Technol. Transfer Issues, Curitiba, Brazil, pp. 87–91 (1995)

    Google Scholar 

  147. De Paor, A.M.: A fiftieth anniversary celebration of the Ziegler–Nichols PID controller. Int. J. Electr. Eng. Educ. 30, 303–316 (1993)

    Google Scholar 

  148. De Paor, A.M., O’Malley, M.: Controllers of Ziegler–Nichols type for unstable processes with time delay. Int. J. Control 49, 1273–1284 (1989)

    MATH  Google Scholar 

  149. Derbel, H.B.J.: Design of PID controllers for time-delay systems by the pole compensation technique. In: Proc. 6th International Multi-Conference on Syst., Signals and Devices, Djerba, Tunisia, pp. 1–6 (2009)

    Chapter  Google Scholar 

  150. Desbiens, A.: La commande automatique des systèmes dynamiques. Masters thesis, Université Laval, Canada (2008). Available at http://w3.gel.ulaval.ca/~desbiens/GEL-21946/NotesDeCours/master.pdf (in French). Cited 14 December 2010.

  151. Devanathan, R.: An analysis of minimum integrated error solution with application to self-tuning controller. J. Electr. Electron. Eng. Aust. 11, 172–177 (1991)

    Google Scholar 

  152. Dutton, K., Thompson, S., Barraclough, B.: The Art of Control Engineering. Addison-Wesley Longman, Boston (1997)

    Google Scholar 

  153. ECOSSE Team: The ECOSSE Control Hypercourse (1996). Available at http://eweb.chemeng.ed.ac.uk/courses/control/course/map/controllers/correlations.html. Cited 4 January 2011

  154. ECOSSE Team: The ECOSSE Control Hypercourse (1996). Available at http://eweb.chemeng.ed.ac.uk/courses/control/course/map/controllers/damped.html. Cited 4 January 2011

  155. Edgar, T.F., Smith, C.L., Shinskey, F.G., Gassman, G.W., Schafbuch, P.J., McAvoy, T.J., Seborg, D.E.: Process Control in Perry’s Chemical Engineers’ Handbook, vol. 8, pp. 1–84. McGraw-Hill International, New York (1997). Editors R.H. Perry and D.W. Green

    Google Scholar 

  156. Ender, D.B.: Process control performance: not as good as you think. Control Eng. 40, 180–190 (1993)

    Google Scholar 

  157. Entech Control Engineering Ltd.: Competency in Process Control—Industry Guidelines (1994). Version 1.0, 3/94

    Google Scholar 

  158. Eriksson, L.: PID controller design and tuning in networked control systems. Ph.D. thesis, Helsinki University of Technology, Finland (2008)

    Google Scholar 

  159. Eriksson, L.M., Johansson, M.: PID controller tuning rules for varying time-delay systems. In: Proc. American Control Conference, New York City, USA, pp. 619–625 (2007)

    Chapter  Google Scholar 

  160. Eriksson, L.M., Johansson, M.: Simple PID tuning rules for varying time-delay systems. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans, USA, pp. 1801–1807 (2007)

    Chapter  Google Scholar 

  161. Eriksson, L., Oksanen, T., Mikkola, K.: PID controller tuning rules for integrating processes with varying time delays. J. Franklin Inst. 346(5), 470–487 (2009)

    Article  MATH  Google Scholar 

  162. Ettaleb, L., Roche, A.: On-line tuning of malfunctioning control loops. In: Proc. Control Syst. 2000, Victoria, Canada, pp. 139–144 (2000)

    Google Scholar 

  163. Faanes, A., Skogestad, S.: pH-neutralization: integrated process and control design. Comput. Chem. Eng. 28, 1475–1487 (2004)

    Article  Google Scholar 

  164. Farrington, G.H.: Communications on “The practical application of frequency response analysis to automatic process control”. Proc. Inst. Mech. Eng. 162, 346–347 (1950)

    Google Scholar 

  165. Fertik, H.A.: Tuning controllers for noisy processes. ISA Trans. 14, 292–304 (1975)

    Google Scholar 

  166. Fertik, H.A., Sharpe, R.: Optimizing the computer control of breakpoint chlorination. In: Advances in Instrumentation: Proc. ISA Conference and Exhibit, Chicago, USA, vol. 34, Part 1, pp. 373–386 (1979)

    Google Scholar 

  167. Fisher, D.G.: Process control: an overview and personal perspective. Can. J. Chem. Eng. 69, 5–26 (1991)

    Article  Google Scholar 

  168. Fliess, M., Join, C.: Intelligent PID controllers. In: Proc. 16th Mediterranean Conference on Control and Automation, Ajaccio, France, pp. 326–331 (2008)

    Chapter  Google Scholar 

  169. Foley, M.W., Ramharack, N.R., Copeland, B.R.: Comparison of PI controller tuning methods. Ind. Eng. Chem. Res. 44(17), 6741–6750 (2005)

    Article  Google Scholar 

  170. Ford, R.L.: The determination of the optimum process-controller settings and their confirmation by means of an electronic simulator. IEE Proc., Part 2 101, 141–155 (1953)

    Google Scholar 

  171. Ford, R.L.: The determination of the optimum process-controller settings and their confirmation by means of an electronic simulator. IEE Proc., Part 2 101, 173–177 (1953)

    Google Scholar 

  172. Frank, P.M., Lenz, R.: Entwurf erweiterter PI-regler für totzeitstrecken mit verzögerung erster ordnung. ETZ, Elektrotech. Z., Ausg. A 90(3), 57–63 (1969) (in German)

    Google Scholar 

  173. Friman, M., Waller, K.V.: A two channel relay for autotuning. Ind. Eng. Chem. Res. 36, 2662–2671 (1997)

    Article  Google Scholar 

  174. Fruehauf, P.S., Chien, I.-L., Lauritsen, M.D.: Simplified IMC-PID tuning rules. In: Proc. ISA Advances in Instrumentation and Control Conference, Chicago, USA, vol. 48, pp. 1745–1766 (1993)

    Google Scholar 

  175. Fukura, S., Tanura, H.: PI controller tuning of second order lag plus dead time processes subject to a reference input. Trans. Soc. Instrum. Control Eng. 19(6), 514–515 (1983)

    Google Scholar 

  176. Gaikward, R., Chidambaram, M.: Design of PID controllers for unstable systems. In: Proc. National Symposium on Intelligent Measurement and Control, Chennai, India, pp. 332–339 (2000)

    Google Scholar 

  177. Gallier, P.W., Otto, R.E.: Self-tuning computer adapts DDC algorithms. Instrum. Technol. 65–70 (1968)

    Google Scholar 

  178. García, R.F., Castelo, F.J.P.: A complement to autotuning methods on PID controllers. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 101–104 (2000)

    Google Scholar 

  179. Geng, G., Geary, G.M.: On performance and tuning of PID controllers in HVAC systems. In: Proc. 2nd IEEE Conference on Control Applications, Vancouver, Canada pp. 819–824 (1993)

    Chapter  Google Scholar 

  180. Gerry, J.P.: How to control processes with large dead times (1998). Available at http://www.expertune.com/artdt.html. Cited 4 January 2011

  181. Gerry, J.P.: Tuning process controllers starts in manual (1999). Available at http://www.expertune.com/ArtInTechMay99.html. Cited 4 January 2011

  182. Gerry, J.P.: How to control a process with long dead time (2003). Available at http://www.expertune.com/learncast.html. Cited 27 June 2005

  183. Gerry, J.P., Hansen, P.D.: Choosing the right controller. Chem. Eng. 25, 65–68 (1987)

    Google Scholar 

  184. Gong, X.F.: Normalised tuning method of PID controller parameters. J. Zhejiang Univ. Sci. 43(1), 43–48 (2000) (in Chinese)

    Google Scholar 

  185. Gong, X., Gao, J., Zhou, C.: Extension of IMC tuning to improve controller performance. In: Proc. IEEE International Conference on Syst., Man and Cybernetics, pp. 1770–1775 (1996)

    Google Scholar 

  186. Gong, X.F., Gao, J., Zhou, C.: Extension of IMC tuning of PID control parameter. Control Decis. 13(4), 337–341 (1998) (in Chinese)

    Google Scholar 

  187. Gonzalez, A.M.: Un planteamiento continuo de la autosintonia de controladores PI y PID. Ph.D. dissertation, Dept. de Informatica y Automatica, UNED, Madrid, Spain (1994) (in Spanish)

    Google Scholar 

  188. Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall, New Jersey (2001)

    Google Scholar 

  189. Gorecki, H., Fuska, S., Grabowski, P., Korytowski, A.: Analysis and Synthesis of Time Delay Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  190. Gorez, R.: A survey of PID auto-tuning methods. J. A, Benelux Q. J. Autom. Control 38, 3–10 (1997)

    Google Scholar 

  191. Gorez, R.: New design relations for 2-DOF PID-like control systems. Automatica 39, 901–908 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  192. Gorez, R., Klàn, P.: Nonmodel-based explicit design relations for PID controllers. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 141–148 (2000)

    Google Scholar 

  193. GPG346 Good Practice Guide: The Carbon Trust. Improving the effectiveness of basic closed loop control systems. Available at http://www.carbontrust.co.uk/Publications/pages/publicationdetail.aspx?id=GPG346. Cited 4 January 2011

  194. Gu, D., Zhang, W.: Design of an H based PI controller for AQM routers supporting TCP flows. In: Proc. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, pp. 603–608 (2009)

    Google Scholar 

  195. Gu, D., Liu, T., Zhang, W.: Study on the relationship between two typical modelling methods in process control. In: Proc. 42nd IEEE Conference on Decision and Control, Maui, USA, pp. 4082–4083 (2003)

    Google Scholar 

  196. Gude, J.J., Kahoraho, E.: New tuning rules for PI and fractional PI controllers. In: Proc. AdChem, Istanbul, Turkey (2009)

    Google Scholar 

  197. Haalman, A.: Adjusting controllers for a deadtime process. Control Eng. July, 71–73 (1965)

    Google Scholar 

  198. Haeri, M.: Tuning rules for the PID controller using a DMC strategy. Asian J. Control 4, 410–417 (2002)

    Article  Google Scholar 

  199. Haeri, M.: PI design based on DMC strategy. Trans. Inst. Meas. Control 27, 21–36 (2005)

    Article  Google Scholar 

  200. Hägglund, T., Åström, K.J.: Industrial adaptive controllers based on frequency response techniques. Automatica 27, 599–609 (1991)

    Article  Google Scholar 

  201. Hägglund, T., Åström, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control. Asian J. Control 4, 364–380 (2002)

    Article  Google Scholar 

  202. Hägglund, T., Åström, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control—Part II. The frequency response method. Asian J. Control 6(4), 469–482 (2004)

    Article  Google Scholar 

  203. Hang, C.C., Åström, K.J.: Refinements of the Ziegler–Nichols tuning formulae for PID auto-tuners. In: Proc. ISA International Conference and Exhibition. Advances in Instrumentation, vol. 43, pp. 1021–1030 (1988)

    Google Scholar 

  204. Hang, C.C., Åström, K.J.: Practical aspects of PID auto-tuners based on relay feedback. In: Proc. IFAC Adaptive control of Chemical Processes Conference, Copenhagen, Denmark, pp. 153–158 (1988)

    Google Scholar 

  205. Hang, C.C., Cao, L.: Improvement of transient response by means of variable set-point weighting. IEEE Trans. Ind. Electron. 43, 477–484 (1996)

    Article  Google Scholar 

  206. Hang, C.C., Åström, K.J., Ho, W.K.: Refinements of the Ziegler–Nichols tuning formula. IEE Proc. Part D. Control Theory Appl. 138, 111–118 (1991)

    Article  Google Scholar 

  207. Hang, C.C., Ho, W.K., Cao, L.S.: A comparison of two design methods for PID controllers. In: Proc. ISA Advances in Instrumentation and Control Conference, Chicago, USA, vol. 48, pp. 959–967 (1993)

    Google Scholar 

  208. Hang, C.C., Lee, T.H., Ho, W.K.: Adaptive Control. Instrument Society of America, North Carolina, USA (1993)

    Google Scholar 

  209. Hang, C.C., Ho, W.H., Cao, L.S.: A comparison of two design methods for PID controllers. ISA Trans. 33, 147–151 (1994)

    Article  Google Scholar 

  210. Hang, C.C., Åström, K.J., Wang, Q.G.: Relay feedback auto-tuning of process controllers—a tutorial review. J. Process Control 12, 143–162 (2002)

    Article  Google Scholar 

  211. Hansen, P.D.: Controller structure and tuning for unmeasured load disturbance. In: Proc. American Control Conference, Philadelphia, USA, vol. 1, pp. 131–136 (1998)

    Google Scholar 

  212. Hansen, P.D.: Robust adaptive PID controller tuning for unmeasured load rejection. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 487–494 (2000)

    Google Scholar 

  213. Harriott, P.: Process Control. McGraw-Hill, New York (1964)

    Google Scholar 

  214. Harriott, P.: Optimum controller settings for processes with dead time: effects of type and location of disturbance. Ind. Eng. Chem. Res. 27(11), 2060–2063 (1988)

    Article  MathSciNet  Google Scholar 

  215. Harris, T.J., Tyreus, B.D.: Comments on internal model control. 4. PID controller design. Ind. Eng. Chem. Res. 26, 2161–2162 (1987)

    Article  Google Scholar 

  216. Harrold, D.: Process controller tuning guidelines. Control Eng. (1999). Available at http://www.smartsys.bg/index.php?page=Engineering&ask=PCTG. Cited 10 January 2012

  217. Hartree, D.R., Porter, A., Callender, A., Stevenson, A.B.: Time-lag in a control system—II. Proc. R. Soc. Lond. A 161, 460–476 (1937)

    Article  MATH  Google Scholar 

  218. Hassan, G.A.: Computer-aided tuning of analog and digital controllers. Control Comput. 21(1), 1–6 (1993)

    Google Scholar 

  219. Hay, J.: Regeltechniek 1. Die Keure n.v., Brugge (1998) (in Flemish)

    Google Scholar 

  220. Hazebroek, P., Van der Waerden, B.L.: The optimum tuning of regulators. Trans. ASME 72, 317–322 (1950)

    Google Scholar 

  221. Heck, E.: Stetige Regler an Regelstrecken—bestehend aus Verzögerungsgliedern erster Ordnung. Heiz. Lüft. Haustech. 20(9), 333–337 (1969) (in German)

    Google Scholar 

  222. Henry, J., Schaedel, H.M.: International co-operation in control engineering education using online experiments. Eur. J. Eng. Educ. 30(2), 265–274 (2005)

    Article  Google Scholar 

  223. Hersh, M.A., Johnson, M.A.: A study of advanced control systems in the workplace. Control Eng. Pract. 5(6), 771–778 (1997)

    Article  Google Scholar 

  224. Hill, A.G., Adams, C.B.: Effect of disturbance dynamics on optimum control of 3rd and 4th order processes. In: Proc. ISA International Conference and Exhibition, Houston, USA, vol. 43, Part 3, pp. 967–983 (1988)

    Google Scholar 

  225. Hill, A.G., Venable, S.W.: The effect of model error on optimum PID controller tuning. In: Proc. ISA International Conference and Exhibition, Philadelphia, USA, vol. 44, Part 1, pp. 51–64 (1989)

    Google Scholar 

  226. Hiroi, K., Terauchi, Y.: Two degrees of freedom algorithm. In: Proc. ISA International Conference and Exhibition. Advances in Instrumentation, pp. 789–796 (1986)

    Google Scholar 

  227. Ho, W.K., Xu, W.: PID tuning for unstable processes based on gain and phase-margin specifications. IEE Proc., Control Theory Appl. 145, 392–396 (1998)

    Article  Google Scholar 

  228. Ho, W.K., Hang, C.C., Zhou, J.H., Yip, C.K.: Adaptive PID control of a process with underdamped response. In: Proc. Asian Control Conference, Tokyo, Japan, pp. 335–338 (1994)

    Google Scholar 

  229. Ho, W.K., Hang, C.C., Cao, L.S.: Tuning of PID controllers based on gain and phase margin specifications. Automatica 31, 497–502 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  230. Ho, W.K., Hang, C.C., Zhou, J.: Self-tuning PID control of a plant with under-damped response with specifications on gain and phase margins. IEEE Trans. Control Syst. Technol. 5, 446–452 (1997)

    Article  Google Scholar 

  231. Ho, W.K., Lim, K.W., Xu, W.: Optimal gain and phase margin tuning for PID controllers. Automatica 34, 1009–1014 (1998)

    Article  MATH  Google Scholar 

  232. Ho, W.K., Lim, K.W., Hang, C.C., Ni, L.Y.: Getting more phase margin and performance out of PID controllers. Automatica 35, 1579–1585 (1999)

    Article  MATH  Google Scholar 

  233. Ho, W.K., Lee, T.H., Han, H.P., Hong, Y.: Self-tuning IMC-PID control with interval gain and phase margins assignment. IEEE Trans. Control Syst. Technol. 9, 535–541 (2001)

    Article  Google Scholar 

  234. Horn, I.G., Arulandu, J.R., Gombas, C.J., Van Antwerp, J.G., Braatz, R.D.: Improved filter design in internal model control. Ind. Eng. Chem. Res. 35, 3437–3441 (1996)

    Article  Google Scholar 

  235. Hougen, J.O.: Measurement and Control Applications. Instrument Society of America, North Carolina, USA (1979)

    Google Scholar 

  236. Hougen, J.O.: A software program for process controller parameter selection. In: Proc. ISA International Conference and Exhibition. Advances in Instrumentation. vol. 43, Part 1, pp. 441–456 (1988)

    Google Scholar 

  237. Huang, C.-T., Lin, Y.-S.: Tuning PID controller for open-loop unstable processes with time delay. Chem. Eng. Commun. 133, 11–30 (1995)

    Article  Google Scholar 

  238. Huang, C.-T., Chou, C.-J., Wang, J.-L.: Tuning of PID controllers based on the second order model by calculation. J. Chin. Inst. Chem. Eng. 27, 107–120 (1996)

    Google Scholar 

  239. Huang, H.-P., Chao, Y.-C.: Optimal tuning of a practical digital PID controller. Chem. Eng. Commun. 18, 51–61 (1982)

    Article  Google Scholar 

  240. Huang, H.-P., Chen, C.-C.: Control-system synthesis for open-loop unstable process with time delay. IEE Proc., Control Theory Appl. 144, 334–346 (1997)

    Article  MATH  Google Scholar 

  241. Huang, H.-P., Chen, C.-C.: Auto-tuning of PID controllers for second-order unstable process having dead time. J. Chem. Eng. Jpn. 32, 486–497 (1999)

    Article  Google Scholar 

  242. Huang, H.-P., Jeng, J.-C.: Monitoring and assessment of control performance for single loop systems. Ind. Eng. Chem. Res. 41, 1297–1309 (2002)

    Article  Google Scholar 

  243. Huang, H.-P., Jeng, J.-C.: Identification for monitoring and autotuning of PID controllers. J. Chem. Eng. Jpn. 36, 284–296 (2003)

    Article  Google Scholar 

  244. Huang, H.-P., Jeng, J.-C.: Process reaction curve and relay methods—identification and PID tuning. In: Johnson, M.A., Moradi, M.H. (eds.) PID Control: New Identification and Design Methods, pp. 297–338. Springer, London (2005)

    Google Scholar 

  245. Huang, H.-P., Chien, I.-L., Lee, Y.-C., Wang, G.-B.: A simple method for tuning cascade control systems. Chem. Eng. Commun. 165, 89–121 (1998)

    Article  Google Scholar 

  246. Huang, H.-P., Lee, M.-W., Chen, C.-L.: Inverse-based design for a modified PID controller. J. Chin. Inst. Chem. Eng. 31, 225–236 (2000)

    Google Scholar 

  247. Huang, H.-P., Roan, M.-L., Jeng, J.-C.: On-line adaptive tuning for PID controllers. IEE Proc., Control Theory Appl. 149, 60–67 (2002)

    Article  Google Scholar 

  248. Huang, H.P., Luo, K.-Y., Jeng, J.-C.: Model based auto-tuning system using relay feedback. In: Proc. IFAC Advanced Control of Chemical Processes Conference, Hong Kong, China, pp. 625–630 (2003)

    Google Scholar 

  249. Huang, H.-P., Jeng, J.-C., Luo, K.-Y.: Auto-tune system using single-run relay feedback test and model-based controller design. J. Process Control 15, 713–727 (2005)

    Article  Google Scholar 

  250. Huang, H.-P., Lin, F.-Y., Jeng, J.-C.: Multi-loop PID controllers design for MIMO processes containing integrator(s). J. Chem. Eng. Jpn. 38(9), 742–756 (2005)

    Article  Google Scholar 

  251. Huba, M.: P- und PD-Polvorgaberegler für Regelstrecken mit begrenzter Stellgröße (P and PD pole assignment controllers for constrained systems). Automatisierungstechnik 53(6), 273–284 (2005) (in German)

    Article  Google Scholar 

  252. Huba, M.: Robust design of integrating controllers for IPDT plant. In: Proc. 17th International Conference on Process Control, Strbske Pleso, Slovak Republic, pp. 353–357 (2009)

    Google Scholar 

  253. Huba, M., Ťapák, P.: Relay identification by analyzing nonsymmetrical oscillations for single integrator with time delay. J. Cybern. Inf. 10, 68–77 (2010)

    Google Scholar 

  254. Huba, M., Žáková, K.: Contribution to the theoretical analysis of the Ziegler–Nichols method. J. Electr. Eng. 54(7–8), 188–194 (2003)

    Google Scholar 

  255. Hwang, S.-H.: Closed-loop automatic tuning of single-input-single-output systems. Ind. Eng. Chem. Res. 34, 2406–2417 (1995)

    Article  Google Scholar 

  256. Hwang, S.-H., Chang, H.-C.: A theoretical examination of closed-loop properties and tuning methods of single-loop PI controllers. Chem. Eng. Sci. 42, 2395–2415 (1987)

    Article  Google Scholar 

  257. Hwang, S.-H., Fang, S.-M.: Closed-loop tuning method based on dominant pole placement. Chem. Eng. Commun. 136, 45–66 (1995)

    Article  Google Scholar 

  258. Hwang, S.-H., Tseng, T.-S.: Process identification and control based on dominant pole expansions. Chem. Eng. Sci. 49(12), 1973–1983 (1994)

    Article  Google Scholar 

  259. Hypiusová, M., Veselý, V.: Tuning of PID controller for guaranteed performance. In: Proc. International Carpathian Control Conference, Sinaia, Romania, pp. 243–246 (2008)

    Google Scholar 

  260. Idzerda, H.H., Ensing, L., Janssen, J.M.L., Offereins, R.P.: Design and applications of an electronic simulator for control systems. Trans. Soc. Instrum. Technol. September, 105–122 (1955)

    Google Scholar 

  261. Isaksson, A.J., Graebe, S.F.: Analytical PID parameter expressions for higher order systems. Automatica 35, 1121–1130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  262. ISMC: RAPID: Robust Advanced PID Control Manual. Intelligent System Modeling and Control nv, Belgium (1999)

    Google Scholar 

  263. Jacob, E.F., Chidambaram, M.: Design of controllers for unstable first-order plus time delay systems. Comput. Chem. Eng. 20, 579–584 (1996)

    Article  Google Scholar 

  264. Jahanmiri, A., Fallahi, H.R.: New methods for process identification and design of feedback controller. Trans. Inst. Chem. Eng. 75(A), 519–522 (1997)

    Article  Google Scholar 

  265. Jhunjhunwala, M., Chidambaram, M.: PID controller tuning for unstable systems by optimization method. Chem. Eng. Commun. 185, 91–113 (2001)

    Article  Google Scholar 

  266. Jin, Q., Quan, L., Wang, X., Qi, F.: Base on all-pole approximation a new internal model PID control method for the system with time delays. In: Proc. IEEE International Conference on Mechatronics and Automation, Changchun, China, pp. 268–273 (2009)

    Google Scholar 

  267. Johnson, E.F.: Use of frequency response analysis in chemical engineering process control. Chem. Eng. Prog. 52(2), 64-F–68-F (1956)

    Google Scholar 

  268. Jones, R.W., Tham, M.T.: Control strategies for process intensified systems. In: Proc. SICE-ICASE International Joint Conference, Busan, Korea, pp. 4618–4623 (2006)

    Chapter  Google Scholar 

  269. Jones, K.O., Williams, D., Montgomery, P.A.: On-line application of an auto-tuning PID controller for dissolved oxygen concentration in a fermentation process. Trans. Inst. Meas. Control 19, 253–262 (1997)

    Article  Google Scholar 

  270. Juang, W.-S., Wang, F.-S.: Design of PID controller by concept of Dahlin’s Law. J. Chin. Inst. Chem. Eng. 26, 133–136 (1995)

    Google Scholar 

  271. Jyothi, S.N., Arvind, S., Chidambaram, M.: Design on PI/PID controller for systems with a zero. Indian Chem. Eng. Sect. A 43(4), 288–293 (2001)

    Google Scholar 

  272. Kamimura, K., Yamada, A., Matsuba, T., Kimbara, A., Kurosu, S., Kasahara, M.: CAT (Computer-aided tuning) software for PID controllers. ASHRAE Trans. 100(1), 180–190 (1994)

    Google Scholar 

  273. Kang, T.-W.: Effect of disturbance dynamics optimum control of second-order plus dead time process. Ph.D. thesis, Oklahoma State University, USA (1989)

    Google Scholar 

  274. Karaboga, D., Kalinli, A.: Tuning PID controller parameters using Tabu search algorithm. In: Proc. IEEE International Conference on Syst., Man and Cybernetics, pp. 134–136 (1996)

    Google Scholar 

  275. Kasahara, M., Matsuba, T., Murasawa, I., Hashimoto, Y., Kamimura, K., Kimbara, A., Kurosu, S.: A tuning method of two degrees of freedom PID controller. ASHRAE Trans. 103, 278–289 (1997)

    Google Scholar 

  276. Kasahara, M., Matsuba, T., Kuzuu, Y., Yamazaki, T., Hashimoto, Y., Kamimura, K., Kurosu, S.: Design and tuning of robust PID controller for HVAC systems. ASHRAE Trans. 105(2), 154–166 (1999)

    Google Scholar 

  277. Kasahara, M., Yamazaki, T., Kuzuu, Y., Hashimoto, Y., Kamimura, K., Matsuba, T., Kurosu, S.: Stability analysis and tuning of PID controller in VAV systems. ASHRAE Trans. 107, 285–296 (2001)

    Google Scholar 

  278. Kaya, I.: A PI-PD controller design for control of unstable and integrating processes. ISA Trans. 42, 111–121 (2003)

    Article  Google Scholar 

  279. Kaya, I., Atherton, D.P.: A PI-PD controller design for integrating processes. In: Proc. American Control Conference, San Diego, USA, pp. 258–262 (1999)

    Google Scholar 

  280. Kaya, A., Scheib, T.J.: Tuning of PID controls of different structures. Control Eng. July, 62–65 (1988)

    Google Scholar 

  281. Keane, M.A., Yu, J., Koza, J.R.: Automatic synthesis of both the topology and tuning of a common parameterized controller for two families of plants using genetic programming. In: Proc. Genetic and Evolutionary Computation Conference, Las Vegas, USA, pp. 496–504 (2000)

    Google Scholar 

  282. Keane, M.A., Koza, J.R., Streeter, M.J.: Apparatus for improved general-purpose PID and non-PID controllers. US Patent No. 6,847,851 B1 (2005)

    Google Scholar 

  283. Keviczky, L., Csáki, F.: Design of control systems with dead time in the time domain. Acta Tech. Acad. Sci. Hung. 74(1–2), 63–84 (1973)

    Google Scholar 

  284. Khan, B.Z., Lehman, B.: Setpoint PI controllers for systems with large normalised dead time. IEEE Trans. Control Syst. Technol. 4, 459–466 (1996)

    Article  Google Scholar 

  285. Khodabakhshian, A., Golbon, N.: Unified PID design for load frequency control. In: Proc. IEEE International Conference on Control Applications, Taipei, Taiwan, pp. 1627–1632 (2004)

    Google Scholar 

  286. Kim, I.-H., Fok, S., Fregene, K., Lee, D.-H., Oh, T.-S., Wang, D.W.L.: Neural-network bases system identification and controller synthesis for an industrial sewing machine. Int. J. Control. Autom. Syst. 2(1), 83–91 (2004)

    Google Scholar 

  287. King, R.: Private communication, 6 March 2006

    Google Scholar 

  288. Kinney, T.B.: Tuning process controllers. Chem. Eng. 19, 67–72 (1983)

    Google Scholar 

  289. Klán, P.: Moderní metody nastavení PID regulátorů [Modern methods of setting PID controllers]. Část I: Procesy s přechodovou charakteristikou typu “S”. Automa 9, 54–57 (2000) (in Czech)

    Google Scholar 

  290. Klán, P.: Moderní metody nastavení PID regulátorů. Část II: Integrační procesy. Automa 1, 52–54 (2001) (in Czech)

    Google Scholar 

  291. Klán, P., Gorez, R.: Vyvážené nastavení PI regulátorů. Automa 4, 49–53 (2000) (in Czech)

    Google Scholar 

  292. Klán, P., Gorez, R.: Nastavení PI regulátorů chránící akční členy [I control with actuator preservation]. Automa 2, 50–52 (2005) (in Czech)

    Google Scholar 

  293. Klán, P., Gorez, R.: On aggressiveness of PI control. In: Proc. IFAC World Congress, Prague, Czech Republic (2005)

    Google Scholar 

  294. Klán, P., Gorez, R.: PI controller design for actuator preservation. In: Proc. IFAC World Congress, Seoul, Korea, pp. 5820–5824 (2008)

    Google Scholar 

  295. Klein, M., Walter, H., Pandit, M.: Digitaler PI-regler: Neue Einstellregeln mit Hilfe der Streckensprungantwort [Digital PI-control: new tuning rules based on step response identification]. at-Automatisierungstechnik 40(8), 291–299 (1992) (in German)

    MATH  Google Scholar 

  296. Koivo, H.N., Tanttu, J.T.: Tuning of PID controllers: survey of SISO and MIMO techniques. In: Proc. IFAC Intelligent Tuning Adaptive Control Symposium, Singapore, pp. 75–80 (1991)

    Google Scholar 

  297. Kookos, I.K., Lygeros, A.I., Arvanitis, K.G.: On-line PI controller tuning for integrator/dead time processes. Eur. J. Control 5, 19–31 (1999)

    MATH  Google Scholar 

  298. Kosinsani, S.: Effect of disturbance dynamic characteristics on optimum PID controller tuning constants. Ph.D. thesis, Oklahoma State University, USA (1985)

    Google Scholar 

  299. Kotaki, M., Yamakawa, Y., Yamazaki, T., Kamimura, K., Kurosu, S.: A tuning method for PID controller that considers changes in system characteristics. ASHRAE Trans. 111(2), 13–22 (2005)

    Google Scholar 

  300. Kotaki, M., Yamkazi, T., Matuba, T., Kamimura, K., Kurosu, S.: A tuning method for PID controller under consideration of changes in plant characteristics. Trans. Soc. Instrum. Control Eng. 41(2), 177–179 (2005)

    Google Scholar 

  301. Kraus, T.W.: Pattern-recognizing self-tuning controller. US Patent Number 4,602,326 (1986)

    Google Scholar 

  302. Kristiansson, B.: PID controllers design and evaluation. PhD thesis, Chalmers University of Technology, Sweden (2003)

    Google Scholar 

  303. Kristiansson, B., Lennartson, B.: Robust design of PID controllers including auto-tuning rules. In: Proc. American Control Conference, vol. 5, pp. 3131–3132 (1998)

    Google Scholar 

  304. Kristiansson, B., Lennartson, B.: Optimal PID controllers for unstable and resonant plants. In: Proc. Conference on Decision and Control, Tampa, USA, pp. 4380–4381 (1998)

    Google Scholar 

  305. Kristiansson, B., Lennartson, B.: Near optimal tuning rules for PI and PID controllers. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 369–374 (2000)

    Google Scholar 

  306. Kristiansson, B., Lennartson, B.: Robust and optimal tuning of PI and PID controllers. IEE Proc., Control Theory Appl. 149, 17–25 (2002)

    Article  Google Scholar 

  307. Kristiansson, B., Lennartson, B.: Convenient almost optimal and robust tuning of PI and PID controllers. In: Proc. IFAC World Congress, Barcelona, Spain (2002)

    Google Scholar 

  308. Kristiansson, B., Lennartson, B.: Robust tuning of PI and PID controllers. IEEE Control Syst. Mag. 26(1), 55–69 (2006)

    Article  MathSciNet  Google Scholar 

  309. Kristiansson, B., Lennartson, B.: Evaluation and tuning of robust PID controllers. In: Proc. Nordic Process Control Workshop, Trondheim, Norway (2003). Available at http://www.itk.ntnu.no/groups/npcw11/PapersDownload/Kristiansson&Lennartson.pdf. Cited 4 January 2011

    Google Scholar 

  310. Kristiansson, B., Lennartson, B., Fransson, C.-M.: From PI to H control in a unified framework. In: Proc. 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2740–2745 (2000)

    Google Scholar 

  311. Kuhn, U.: Ein praxisnahe Einstellregel für PID-regler: die T-summen-regel. Autom.tech. Prax. 37(5), 10–16 (1995) (in German)

    Google Scholar 

  312. Kukal, J.: O volbč parametrů PI a PID regulátorů. Automatizace 49(1), 16–20 (2006) (in Czech)

    MathSciNet  Google Scholar 

  313. Kuwata, R.: An improved ultimate sensitivity method and PID; I-PD control characteristics. Trans. Soc. Instrum. Control Eng. 23(3), 232–239 (1987)

    Google Scholar 

  314. Kwak, H.J., Sung, S.W., Lee, I.-B.: Stabilizability conditions and controller design for unstable processes. Trans. Inst. Chem. Eng. 78(A), 549–556 (2000)

    Article  Google Scholar 

  315. Landau, I.D., Voda, A.: An analytical method for the auto-calibration of PID controllers. In: Proc. 31st Conference on Decision and Control, Tucson, USA, pp. 3237–3242 (1992)

    Chapter  Google Scholar 

  316. Larionescu, S.: Reglarea automată a instalaţiilor pe baza unui model intern (2002). Available at http://www.geocities.com/larionescu/Infos1.htm. Cited 27 May 2008 (in Romanian)

  317. Latzel, W.: Einstellregeln für kontinuierliche und Abtast-Regler nach der Methode der Betragsanpassung (On the setting of continuous and sampled data controllers by the method of gain adjustment). Automatisierungstechnik 36, 170–178 (1988) (in German)

    MATH  Google Scholar 

  318. Lavanya, K., Umamaheswari, B., Panda, R.C.: System identification and controller tuning rule for DC-DC converter using ripple voltage waveform. In: Proc. International Conference on Power Electronics, Drives and Energy Syst., New Delhi, India, pp. 1–4 (2006)

    Chapter  Google Scholar 

  319. Lavanya, K., Umamaheswari, B., Panda, R.C.: Identification of second order plus dead time systems using relay feedback test. Indian Chem. Eng. Sect. A 48(3), 94–102 (2006)

    Google Scholar 

  320. Lee, C.-H.: A survey of PID controller design based on gain and phase margins. Int. J. Comput. Cogn. 2(3), 63–100 (2004)

    Google Scholar 

  321. Lee, J., Edgar, T.F.: Improved PI controller with delayed or filtered integral mode. AIChE J. 48, 2844–2850 (2002)

    Article  Google Scholar 

  322. Lee, W.S., Shi, J.: Modified IMC-PID controllers and generalised PID controllers for first-order plus dead-time processes. In: Proc. Seventh International Conference on Control, Automation, Robotics and Vision, Singapore, pp. 898–903 (2002)

    Google Scholar 

  323. Lee, C.-H., Teng, C.-C.: Calculation of PID controller parameters by using a fuzzy neural network. ISA Trans. 42, 391–400 (2003)

    Article  Google Scholar 

  324. Lee, J., Choi, J.Y., Lee, S.D., Kwon, Y.S.: Improved method for a PID controller tuning by the dominant pole placement. J. Korean Inst. Chem. Eng. 30(5), 631–634 (1992) (in Korean)

    Google Scholar 

  325. Lee, Y., Park, S., Lee, M., Brosilow, C.: PID controller tuning to obtain desired closed-loop responses for SI/SO systems. AIChE J. 44, 106–115 (1998)

    Article  Google Scholar 

  326. Lee, Y., Lee, J., Park, S.: PID tuning for integrating and unstable processes with time delay. Chem. Eng. Sci. 55, 3481–3493 (2000)

    Article  Google Scholar 

  327. Lee, J., Park, H.C., Sung, S.W.: Analytical expression of ultimate gains and ultimate periods with phase-optimal approximations of time delays. Can. J. Chem. Eng. 83, 990–995 (2005)

    Article  Google Scholar 

  328. Lee, Y., Park, S., Lee, M.: Consider the generalized IMC-PID method for PID controller tuning of time-delay processes. Hydrocarb. Process. January, 87–91 (2006)

    Google Scholar 

  329. Lelic, M., Gajic, Z.: A reference guide to PID controllers in the nineties. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 73–82 (2000)

    Google Scholar 

  330. Lennartson, B., Kristiansson, B.: Pass band and high frequency robustness for PID control. In: Proc. 36th IEEE Conference on Decision and Control, San Diego, USA, pp. 2666–2671 (1997)

    Chapter  Google Scholar 

  331. Leonard, F.: Optimum PIDS controllers, an alternative for unstable delayed systems. In: Proc. IEEE Conference on Control Applications, Glasgow, UK, pp. 1207–1210 (1994)

    Chapter  Google Scholar 

  332. Leva, A.: PID autotuning algorithm based on relay feedback. IEE Proc. Part D. Control Theory Appl. 140, 328–338 (1993)

    Article  MATH  Google Scholar 

  333. Leva, A.: Model-based tuning: the very basics and some useful techniques. J. A: Benelux Q. J. Autom. Control 42(3), 14–22 (2001)

    Google Scholar 

  334. Leva, A.: Model-based proportional-integral-derivative autotuning improved with relay feedback identification. IEE Proc., Control Theory Appl. 152, 247–256 (2005)

    Article  Google Scholar 

  335. Leva, A.: Model-based PI(D) tuning with ad-hoc regulator expressions. In: Proc. American Control Conference, New York, USA, pp. 5802–5807 (2007)

    Chapter  Google Scholar 

  336. Leva, A.: Autotuning of PI+p controllers. In: Proc. IEEE International Symposium on Computer-Aided Control Syst. Design, San Antonio, USA, pp. 1049–1054 (2008)

    Google Scholar 

  337. Leva, A., Colombo, A.M.: Estimating model mismatch overbounds for the robust autotuning of industrial regulators. Automatica 26, 1855–1861 (2000)

    Google Scholar 

  338. Leva, A., Colombo, A.M.: Implementation of a robust PID autotuner in a control design environment. Trans. Inst. Meas. Control 23, 1–20 (2001)

    Google Scholar 

  339. Leva, A., Colombo, A.M.: On the IMC-based synthesis of the feedback block of ISA-PID regulators. Trans. Inst. Meas. Control 26, 417–440 (2004)

    Article  Google Scholar 

  340. Leva, A., Maggio, M.: The PI+p controller structure and its tuning. J. Process Control 19, 1451–1457 (2009)

    Article  Google Scholar 

  341. Leva, A., Maffezzoni, C., Scattolini, R.: Self-tuning PI-PID regulators for stable systems with varying delay. Automatica 30, 1171–1183 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  342. Leva, A., Bascetta, L., Schiavo, F.: Model-based proportional-integral/proportional-integral-derivative (PI/PID) autotuning with fast relay identification. Ind. Eng. Chem. Res. 45(12), 4052–4062 (2006)

    Article  Google Scholar 

  343. Leva, A., Cox, C., Ruano, A.: Hands-on PID autotuning: a guide to better utilisation (2006). Available at http://www.ifac-control.org/publications/list-of-professional-briefs/pb_final_levacoxruano.pdf/view. Cited 4 January 2011

  344. Li, Z., Su, X., Lin, P.: A practical algorithm for PID auto-tuning. Adv. Model. Anal. C, Syst. Anal. Control Des. 40(2), 17–27 (1994)

    Google Scholar 

  345. Li, Y.-N., Zhang, W.-D., Liu, T.: New design method of PID controller for inverse response processes with time delay. J. Shanghai Chiao-Tung Univ. 38(4), 506–509 (2004) (in Chinese)

    MathSciNet  Google Scholar 

  346. Li, Y., Ang, K.H., Chong, G.C.Y.: PID control system analysis and design. IEEE Control Syst. Mag. 26(1), 32–41 (2006)

    Article  Google Scholar 

  347. Li, Y., Ang, K.H., Chong, G.C.Y.: Patents, software and hardware for PID control: an overview and analysis of the current art. IEEE Control Syst. Mag. 26(1), 42–54 (2006)

    Article  Google Scholar 

  348. Lim, C.M., Tan, W.C., Lee, T.S.: Tuning of PID controllers for first and second-order lag processes with dead time. Int. J. Electr. Eng. Educ. 22, 345–353 (1985)

    Google Scholar 

  349. Lipták, B. (ed.): Instrument Engineers Handbook Volume II: Process Control. Chilton, Philadelphia (1970)

    Google Scholar 

  350. Lipták, B.: Controller tuning II: Problems and methods (2001). Available at http://www.controlmagazine.com. Cited 21 November 2003

  351. Lipták, B.: Post-il Energy Technology: The World’s First Solar-Hydrogen Demonstration Power Plant, p. 193. CRC Press, Boca Raton (2009)

    Google Scholar 

  352. Litrico, X., Fromion, V.: Tuning of robust distant downstream PI controllers for an irrigation canal pool. I: Theory. J. Irrig. Drain. Eng. 132(4), 359–368 (2006)

    Article  Google Scholar 

  353. Litrico, X., Fromion, V., Baume, J.-P.: Tuning of robust distant downstream PI controllers for an irrigation canal pool. II: Implementation issues. J. Irrig. Drain. Eng. 132(4), 369–379 (2006)

    Article  Google Scholar 

  354. Litrico, X., Malaterre, P.-O., Baume, J.-P., Vion, P.-Y., Ribot-Bruno, J.: Automatic tuning of PI controllers for an irrigation canal pool. J. Irrig. Drain. Eng. 133(1), 27–37 (2007)

    Article  Google Scholar 

  355. Liu, T., Gu, D., Zhang, W.: A H infinity design method of PID controller for second-order processes with integrator and time delay. In: Proc. 42nd IEEE Conference on Decision and Control, Maui, USA, pp. 6044–6049 (2003)

    Google Scholar 

  356. Lloyd, S.G.: Tuning arrangements for turning the control parameters of a controller. U.S. Patent Number 5,283,729 (1994)

    Google Scholar 

  357. Lopez, A.M.: Optimisation of system response. Ph.D. dissertation, Louisiana State University, USA (1968)

    Google Scholar 

  358. Lopez, A.M., Smith, C.L., Murrill, P.W.: An advanced tuning method. Br. Chem. Eng. 14, 1553–1555 (1969)

    Google Scholar 

  359. Loron, L.: Tuning of PID controllers by the non-symmetrical optimum method. Automatica 33, 103–107 (1997)

    Article  MATH  Google Scholar 

  360. Luo, K.-N., Kuo, C.-Y., Sheu, L.-T.: A novel method for fuzzy self-tuning PID controllers. In: Proc. Asian Fuzzy Syst. Symposium, pp. 194–199 (1996)

    Google Scholar 

  361. Luyben, W.L.: Dynamics and control of recycle systems. 1. Simple open loop and closed loop systems. Ind. Eng. Chem. Res. 32, 466–475 (1993)

    Article  Google Scholar 

  362. Luyben, W.L.: Tuning proportional-integral-derivative controllers for integrator/deadtime processes. Ind. Eng. Chem. Res. 35, 3480–3483 (1996)

    Article  Google Scholar 

  363. Luyben, W.L.: Tuning temperature controllers on openloop unstable reactors. Ind. Eng. Chem. Res. 37, 4322–4331 (1998)

    Article  Google Scholar 

  364. Luyben, W.L.: Tuning proportional-integral controllers for processes with both inverse response and deadtime. Ind. Eng. Chem. Res. 39, 973–976 (2000)

    Article  Google Scholar 

  365. Luyben, W.L.: Effect of derivative algorithm and tuning selection on the PID control of dead-time processes. Ind. Eng. Chem. Res. 40, 3605–3611 (2001)

    Article  Google Scholar 

  366. Luyben, W.L., Luyben, M.L.: Essentials of Process Control. McGraw-Hill, Singapore (1997)

    Google Scholar 

  367. MacLellan, G.D.S.: Communications on “The practical application of frequency response analysis to automatic process control”. In: Proc. Institution of Mechanical Engineers (London), vol. 162, pp. 347–348 (1950)

    Google Scholar 

  368. Madhuranthakam, C.R., Elkamel, A., Budman, H.: Optimal tuning of PID controllers for FOPDT, SOPDT and SOPDT with lead processes. Chem. Eng. Process. 47, 251–264 (2008)

    Article  Google Scholar 

  369. Maffezzoni, C., Rocco, P.: Robust tuning of PID regulators based on step-response identification. Eur. J. Control 3, 125–136 (1997)

    MATH  Google Scholar 

  370. Majhi, S.: Relay feedback process identification and controller design. Ph.D. thesis, University of Sussex, UK (1999)

    Google Scholar 

  371. Majhi, S.: On-line PI control of stable processes. J. Process Control 15, 859–867 (2005)

    Article  Google Scholar 

  372. Majhi, S., Atherton, D.P.: Autotuning and controller design for processes with small time delays. IEE Proc., Control Theory Appl. 146(5), 415–425 (1999)

    Article  Google Scholar 

  373. Majhi, S., Atherton, D.P.: Online tuning of controllers for an unstable FOPDT process. IEE Proc., Control Theory Appl. 147, 421–427 (2000)

    Article  Google Scholar 

  374. Majhi, S., Litz, L.: On-line tuning of PID controllers. In: Proc. American Control Conference, Denver, USA, pp. 5003–5004 (2003)

    Chapter  Google Scholar 

  375. Majhi, S., Mahanta, C.: Tuning of controllers for integrating time delay processes. In: Proc. IEEE Region 10 Int. Conference on Electrical and Electronic Technol., vol. 1, pp. 317–320 (2001)

    Google Scholar 

  376. Malwatkar, G.M., Sonawane, S.H., Waghmare, L.M.: Tuning PID controllers for higher-order oscillatory systems with improved performance. ISA Trans. 48, 347–353 (2009)

    Article  Google Scholar 

  377. Mann, G.K.I., Hu, B.-G., Gosine, R.G.: Time-domain based design and analysis of new PID tuning rules. IEE Proc., Control Theory Appl. 148, 251–261 (2001)

    Article  Google Scholar 

  378. Mantz, R.J., Tacconi, E.J.: Complementary rules to Ziegler and Nichols’ rules for a regulating and tracking controller. Int. J. Control 49, 1465–1471 (1989)

    MATH  Google Scholar 

  379. Manum, H.: Extensions of Skogestad’s SIMC tuning rules to oscillatory and unstable processes (2005). Available at http://www.nt.ntnu.no/users/skoge/diplom/prosjekt05/manum/rapport.pdf. Cited 4 January 2011

  380. Marchetti, G., Scali, C.: Use of modified relay techniques for the design of model-based controllers for chemical processes. Ind. Eng. Chem. Res. 39, 3325–3334 (2000)

    Article  Google Scholar 

  381. Marchetti, G., Scali, C., Lewin, D.R.: Identification and control of open-loop unstable processes by relay methods. Automatica 37, 2049–2055 (2001)

    Article  MATH  Google Scholar 

  382. Marlin, T.E.: Process Control. McGraw-Hill, New York (1995)

    Google Scholar 

  383. Maroto, R.: Ecuaciones para la sintonización de controladores PID con acción derivative aplicada a la señal realimentada. Proyecto Eléctrico, Universidad de Costa Rica (2007). Available at http://eie.ucr.ac.cr/uploads/file/proybach/pb0714t.pdf. Cited 4 January 2011 (in Spanish)

  384. Mataušek, M.R., Kvaščev, G.S.: A unified step response procedure for autotuning of PI controller and Smith predictor for stable processes. J. Process Control 13, 787–800 (2003)

    Article  Google Scholar 

  385. Mataušek, M.R., Ribić, A.I.: Design and robust tuning of control scheme based on the PD controller plus Disturbance Observer and low-order integrating first-order plus dead-time model. ISA Trans. 48(4), 410–416 (2009)

    Article  Google Scholar 

  386. Matsuba, T., Kasahara, M., Murasawa, I., Hashimoto, Y., Kamimura, K., Kimbara, A., Kurosu, S.: Stability limit of room air temperature of a VAV system. ASHRAE Trans. 104(2), 257–265 (1998)

    Google Scholar 

  387. Mazzini, H.M., Taroco, C.G., Ribeiro, L.: Design of two-degree-of-freedom control scheme for unstable SOPTD systems. In: Proc. Conferência Internacional de Aplicações Industriais, Poços de Caldas, Brazil, pp. 1–6 (2008)

    Google Scholar 

  388. McAnany, D.E.: A pole placement technique for optimum PID control parameters. In: Proc. ISA Advances in Instrumentation and Control Conference, Chicago, USA, vol. 48, pp. 1775–1782 (1993)

    Google Scholar 

  389. McAvoy, T.J., Johnson, E.F.: Quality of control problem for dead-time plants. Ind. Eng. Chem. Process Des. Dev. 6, 440–446 (1967)

    Article  Google Scholar 

  390. McMillan, G.K.: Control loop performance. In: Proc. ISA International Conference and Exhibition, Houston, USA, vol. 39, pp. 589–603 (1984)

    Google Scholar 

  391. McMillan, G.K.: Tuning and Control Loop Performance—A Practitioner’s Guide, 3rd edn. Instrument Society of America, North Carolina, USA (1994)

    Google Scholar 

  392. McMillan, G.K.: Good Tuning: A Pocket Guide, 2nd edn. Instrument Society of America, North Carolina, USA (2005)

    Google Scholar 

  393. McMillan, G.: Tips-N-Techniques (TNT)—Tuning furnace and incinerator pressure loops (2008). Available at http://www.modelingandcontrol.com/2008/08/tipsntechniques_tnt_tuning_fur_1.html. Cited 4 January 2011

  394. Méndez, V.: Ecuaciones para la sintonización de controladores PID utilizando funciones de costo del tipo IT m E n. Proyecto Eléctrico, Universidad de Costa Rica (2006). Available at http://www.eie.ucr.ac.cr/uploads/file/proybach/pb0631t.pdf. Cited 4 January 2011 (in Spanish)

  395. Mesa, F., Lozano, J.L., Marin, L.: On the consideration of FOPDT and SOPDT responses as bounds of PI tuning. In: Proc. IEEE Mediterranean Electrotechnical Conference, Málaga, Spain, pp. 421–424 (2006)

    Chapter  Google Scholar 

  396. Mitchell, R.J.: ‘Flat phase’ PID controllers. In: Proc. UK Automatic Control Conference, Manchester, UK (2008)

    Google Scholar 

  397. Mizutani, M., Hiroi, K.: New two degrees of freedom PID algorithm with 1st lag mean (super 2dof PID algorithm). In: Proc. ISA Advances in Instrumentation and Control, Anaheim, USA, vol. 46, Part 2, pp. 1125–1132 (1991)

    Google Scholar 

  398. Mnif, F.: New tuning rules of PI-like controllers with transient performances for monotonic time-delay systems. ISA Trans. 47, 401–406 (2008)

    Article  Google Scholar 

  399. Mollenkamp, R.A., Smith, C.L., Corripio, A.B.: Using models to tune industrial controllers. Instrum. Control Syst. September, 46–47 (1973)

    Google Scholar 

  400. Montenegro, A.: Sintonización de controladores PID de dos grados de libertad para lograr un desempeño optimo balanceado. Proyecto Eléctrico, Universidad de Costa Rica, Facultad de Ingeniería (2007). Available at http://www.eie.ucr.ac.cr/uploads/file/proybach/pb07_II/pb0725t.pdf. Cited 4 January 2011 (in Spanish)

  401. Morari, M., Zafiriou, E.: Robust Process Control. Prentice-Hall, Englewood Cliffs (1989)

    Google Scholar 

  402. Morilla, F., González, A., Duro, N.: Auto-tuning PID controllers in terms of relative damping. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 161–166 (2000)

    Google Scholar 

  403. Moros, R.: Strecke mit Ausgleich höherer Ordnung (1999). Available at http://techni.tachemie.uni-leipzig.de/reg/regeintn.html. Cited 4 January 2011 (in German)

  404. Murata, H., Sagara, S.: The noninteger order lag element plus dead time approximation of the process dynamics and its application to the optimal setting of the PI controller. Syst. Control 21(9), 517–524 (1977) (in Japanese)

    Google Scholar 

  405. Murrill, P.W.: Automatic Control of Processes. International Textbook Co., Pennsylvania, USA (1967)

    Google Scholar 

  406. Naşcu, I., De Keyser, R., Folea, S., Buzdugan, T.: Development and evaluation of a PID auto-tuning controller. In: Proc. IEEE-TTTC International Conference on Automation, Quality, Testing and Robotics, Cluj-Napora, Romania, pp. 122–127 (2006)

    Chapter  Google Scholar 

  407. Nemati, H., Bagheri, P.: A new approach to tune the two-degree-of-freedom (2DOF). In: Proc. IEEE International Symposium on Computer-Aided Control System Design, Yokohama, Japan, pp. 1819–1824 (2010)

    Chapter  Google Scholar 

  408. NI Labview: PID control toolkit user manual (2001). Available at http://www.ni.com/pdf/manuals/322192a.pdf. Cited 4 January 2011

  409. Nomura, M., Saito, T., Kitamori, T.: A simple tuning method based on partial model matching for PID controller. Trans. Inst. Electr. Eng. Jpn. 113-C(1), 59–68 (1993) (in Japanese)

    Google Scholar 

  410. Normey-Rico, J.E., Alcalá, I., Gómez-Ortega, J., Camacho, E.F.: Robust PID tuning application to a mobile robot path tracking problem. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 648–653 (2000)

    Google Scholar 

  411. Normey-Rico, J.E., Alcalá, I., Gómez-Ortega, J., Camacho, E.F.: Mobile robot path tracking using a robust PID controller. Control Eng. Pract. 9, 1209–1214 (2001)

    Article  Google Scholar 

  412. Normey-Rico, J.E., Camacho, E.F.: Control of Dead-Time Processes, pp. 93–95. Springer, London (2007)

    Google Scholar 

  413. O’Connor, G.E., Denn, M.M.: Three mode control as an optimal control. Chem. Eng. Sci. 27, 121–127 (1972)

    Article  Google Scholar 

  414. O’Dwyer, A.: PID compensation of time delayed processes: a survey. In: Proc. Irish Signals and Syst. Conference, Dublin, Ireland, pp. 5–12 (2000)

    Google Scholar 

  415. O’Dwyer, A.: PI and PID controller tuning rule design for processes with delay, to achieve constant gain and phase margins for all values of delay. In: Proc. Irish Signals and Syst. Conference, N.U.I., Maynooth, Ireland, pp. 96–100 (2001)

    Google Scholar 

  416. O’Dwyer, A.: Series PID controller tuning rules. Technical Report AOD-01-13, Dublin Institute of Technology, Ireland (2001)

    Google Scholar 

  417. O’Dwyer, A.: PID compensation of time delayed processes 1998–2002: a survey. In: Proc. American Control Conference, Denver, USA, pp. 1494–1499 (2003)

    Chapter  Google Scholar 

  418. O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 1st edn. Imperial College Press, London (2003)

    Google Scholar 

  419. O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 2nd edn. Imperial College Press, London (2006)

    Book  Google Scholar 

  420. O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 3rd edn. Imperial College Press, London (2009)

    Book  Google Scholar 

  421. Ogawa, S.: PI controller tuning for robust performance. In: Proc. 4th IEEE Conference on Control Applications, pp. 101–106 (1995)

    Google Scholar 

  422. Ogawa, M., Katayama, T.: A robust tuning method for I-PD controller incorporating a constraint on manipulated variable. Trans. Soc. Instrum. Control Eng. E-1(1), 265–273 (2001)

    Google Scholar 

  423. Okada, Y., Yamakawa, Y., Yamazaki, T., Kurosu, S.: Tuning method of PI controller for given damping coefficient. In: Proc. SICE-ICASE International Joint Conference, Busan, Korea, pp. 5204–5207 (2006)

    Chapter  Google Scholar 

  424. Okada, Y., Yamakawa, Y., Yamazaki, T., Kurosu, S.: Tuning method of PID controller for desired damping coefficient. In: Proc. SICE Annual Conference, Takamatsu, Japan, pp. 795–799 (2007)

    Chapter  Google Scholar 

  425. OMEGA Books: Introduction to temperature controllers (2005). Available at http://www.gii.upv.es/personal/gbenet/IIN/tema_transductores/OmegaBooks/tech_ref_temp.pdf, Z111–Z117. Cited 4 January 2011

  426. Oppelt, W.: Einige Faustformeln zur Einstellung von Regelvorgängen. Chem. Ing. Tech. 23(8), 190–193 (1951) (in German)

    Article  Google Scholar 

  427. Ou, W.-H., Chen, Y.-W.: Adaptive actual PID control with an adjustable identification interval. Chem. Eng. Commun. 134, 93–105 (1995)

    Article  Google Scholar 

  428. Ou, L., Gu, D., Zhang, W., Cai, Y.: H PID controller stabilization for stable processes with time delay. In: Proc. IEEE International Conference on Industrial Technol, Hong Kong, China, pp. 655–659 (2005)

    Google Scholar 

  429. Ou, L., Tang, Y., Gu, D., Zhang, W.: Stability analysis of PID controllers for integral processes with time delay. In: Proc. American Control Conference, Portland, USA, pp. 4247–4252 (2005)

    Google Scholar 

  430. Ou, L., Zhang, W., Gu, D.: Stabilization of LTI time-delayed processes using analytical PID controllers. In: Proc. IFAC World Congress, Prague, Czech Republic (2005)

    Google Scholar 

  431. Oubrahim, R., Leonard, F.: PID tuning by a composed structure. In: Proc. UKACC International Conference on Control, Swansea, UK, vol. 2, pp. 1333–1338 (1998)

    Chapter  Google Scholar 

  432. Ozawa, K., Noda, Y., Yamazaki, T., Kamimura, K., Kurosu, S.: A tuning method for PID controller using optimisation subject to constraints on control input. ASHRAE Trans. 109, 79–88 (2003)

    Google Scholar 

  433. Padhy, P.K., Majhi, S.: Relay based PI-PD design for stable and unstable FOPDT processes. Comput. Chem. Eng. 30(5), 790–796 (2006)

    Article  Google Scholar 

  434. Padhy, P.K., Majhi, S.: An exact method for on-line identification of FOPDT processes. In: Proc. IEEE International Conference on Industrial Technol., Mumbai, India, pp. 1528–1532 (2006)

    Chapter  Google Scholar 

  435. Pagola, F.L., Pecharromán, R.R.: PID auto-tuning based on a second point of frequency response. In: Proc. IFAC World Congress, Barcelona, Spain (2002). Available at http://www.iit.upcomillas.es/docs/02FLPH01.pdf. Cited 4 January 2011

    Google Scholar 

  436. Pai, N.-S., Chang, S.-C., Huang, C.-T.: Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations. J. Process Control 20, 726–733 (2010)

    Article  Google Scholar 

  437. Panda, R.C.: Synthesis of PID tuning rule using the desired closed-loop response. Ind. Eng. Chem. Res. 47(22), 8684–8692 (2008)

    Article  MathSciNet  Google Scholar 

  438. Panda, R.C.: Synthesis of PID controller for unstable and integrating processes. Chem. Eng. Sci. 64, 2807–2816 (2009)

    Article  Google Scholar 

  439. Panda, R.C., Yu, C.-C., Huang, H.-P.: PID tuning rules for SOPDT systems: review and some new results. ISA Trans. 43, 283–295 (2004)

    Article  Google Scholar 

  440. Panda, R.C., Hung, S.-B., Yu, C.-C.: An integrated modified smith predictor with PID controller for integrator plus deadtime processes. Ind. Eng. Chem. Res. 45, 1397–1407 (2006)

    Article  Google Scholar 

  441. Paraskevopoulos, P.N., Pasgianos, G.D., Arvanitis, K.G.: New tuning and identification methods for unstable first order plus dead-time processes based on pseudoderivative feedback control. IEEE Trans. Control Syst. Technol. 12, 455–464 (2004)

    Article  Google Scholar 

  442. Paraskevopoulos, P.N., Pasgianos, G.D., Arvanitis, K.G.: PID-type controller tuning for unstable first order plus dead time processes based on gain and phase margin specifications. IEEE Trans. Control Syst. Technol. 14(5), 926–936 (2006)

    Article  Google Scholar 

  443. Park, H.I., Sung, S.W., Lee, I.-B., Lee, J.: A simple autotuning method using proportional controller. Chem. Eng. Commun. 161, 163–184 (1997)

    Article  Google Scholar 

  444. Park, J.H., Sung, S.W., Lee, I.-B.: An enhanced PID control strategy for unstable processes. Automatica 34, 751–756 (1998)

    Article  MATH  Google Scholar 

  445. Parr, E.A.: Industrial Control Handbook, vol. 3. BSP Professional Books, Oxford (1989)

    Google Scholar 

  446. Paz Ramos, M.A., Morales, L.E.M., Juan, L.B.M., Bazán, G.R.: Genetic rules to tune proportional + derivative controllers for integrative processes with time delays. In: Proc. 15th International Conference on Electronics, Communications and Computers, Puebla, Mexico (2005)

    Google Scholar 

  447. Pecharromán, R.: Private communication, 9 May 2000

    Google Scholar 

  448. Pecharromán, R.: Ajuste automático de reguladores industriales. Algoritmo robustos de identificación y síntesis. Ph.D. thesis, Universidad Pontificia Comillas, Madrid, Spain (2000) (in Spanish)

    Google Scholar 

  449. Pecharromán, R.R., Pagola, F.L.: Control design for PID controllers auto-tuning based on improved identification. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 89–94 (2000)

    Google Scholar 

  450. Pemberton, T.J.: PID: the logical control algorithm. Control Eng. 19(5), 66–67 (1972)

    Google Scholar 

  451. Pemberton, T.J.: PID: the logical control algorithm II. Control Eng. 19(7), 61–63 (1972)

    Google Scholar 

  452. Peng, H., Wu, S.-C.: Identification and control of typical industrial process. J. Cent. South Univ. Technol. 7, 165–169 (2000)

    Article  Google Scholar 

  453. Penner, A.: Tuning rules for a PI controller. In: Proc. ISA International Conference and Exhibition, Houston, USA, vol. 43, Part 3, pp. 1037–1051 (1988)

    Google Scholar 

  454. Perić, N., Petrović, I., Branica, I.: A method of PID controller autotuning. In: Proc. IFAC Conference on Control of Industrial Syst, Belfort, France, pp. 597–602 (1997)

    Google Scholar 

  455. Pessen, D.W.: Optimum three-mode controller settings for automatic start-up. Trans. ASME 75, 843–849 (1953)

    Google Scholar 

  456. Pessen, D.W.: How to “tune in” a three-mode controller. Instrumentation 7(3), 29–32 (1954)

    Google Scholar 

  457. Pessen, D.W.: A new look at PID-controller tuning. J. Dyn. Syst. Meas. Control 116(3), 553–557 (1994)

    Article  Google Scholar 

  458. Petterson, T.S.: Tuning and control strategy for an offshore process subject to minimum environmental impact (2007). Available at http://www.nt.ntnu.no/users/skoge/diplom/prosjekt07/pettersen/Rapport.pdf. Cited 4 January 2011

  459. Pettit, J.W., Carr, D.M.: Self-tuning controller. US Patent No. 4,669,040 (1987)

    Google Scholar 

  460. Pinnella, M.J., Wechselberger, E., Hittle, D.C., Pedersen, C.O.: Self-tuning digital integral control. ASHRAE Trans. 92(2B), 202–209 (1986)

    Google Scholar 

  461. PMA (Prozeß-und Maschinen-Automation) GmbH: Industrieregler KS40-1, KS41-1, KS42-1 Manuelle Optimierung, p. 18 (2006). Available at http://www.pma-online.de/de/pdf/ba_ks40-1_41-1_42-1_d_9499-040-62718.pdf. Cited 4 January 2011 (in German)

  462. Pohjola, M.: PID controller design in networked control systems. M.Sc Thesis, Department of Automation and Systems Technology, Helsinki University of Technology, Finland (2006)

    Google Scholar 

  463. Pohjola, M.: Adaptive jitter margin PID controller. In: Proc. 4th IEEE Conference on Automation Science and Engineering, Washington DC, USA, pp. 534–539 (2008)

    Google Scholar 

  464. Polonyi, M.J.G.: PID controller tuning using standard form optimization. Control Eng. March, 102–106 (1989)

    Google Scholar 

  465. Pomerleau, A., Poulin, É.: Manipulated variable based PI tuning and detection of poor settings: an industrial experience. ISA Trans. 43, 445–457 (2004)

    Article  Google Scholar 

  466. Potočnik, B., Škrjanc, I., Matko, D., Zupančič, B.: Samonastavljivi PI regulator na podlagi metode z relejskim preskusom. Elektroteh. Vestn. 68, 115–122 (2001) (in Slovenian)

    Google Scholar 

  467. Poulin, E., Pomerleau, A.: PID tuning for integrating and unstable processes. IEE Proc., Control Theory Appl. 143, 429–435 (1996)

    Article  MATH  Google Scholar 

  468. Poulin, E., Pomerleau, A.: Unified PID design method based on a maximum peak resonance specification. IEE Proc., Control Theory Appl. 144, 566–574 (1997)

    Article  MATH  Google Scholar 

  469. Poulin, E., Pomerleau, A.: PI settings for integrating processes based on ultimate cycle information. IEEE Trans. Control Syst. Technol. 7, 509–511 (1999)

    Article  Google Scholar 

  470. Poulin, E., Pomerleau, A., Desbiens, A., Hodouin, D.: Development and evaluation of an auto-tuning and adaptive PID controller. Automatica 32, 71–82 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  471. Pramod, S., Chidambaram, M.: Closed loop identification of transfer function model for unstable bioreactors for tuning PID controllers. Bioprocess Biosyst. Eng. 22, 185–188 (2000)

    Google Scholar 

  472. Prashanti, G., Chidambaram, M.: Set-point weighted PID controllers for unstable systems. J. Franklin Inst. 337, 201–215 (2000)

    Article  MATH  Google Scholar 

  473. Prokop, R., Korbel, J.: Relé ve zpětné vazbě aneb převrat v návrhu regulátorů. Automatizace 48(3), 190–195 (2006) (in Czech)

    Google Scholar 

  474. Prokop, R., Husták, P., Prokopová, Z.: Robust PID-like controllers—design and tuning. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 320–325 (2000)

    Google Scholar 

  475. Prokop, R., Korbel, J., Matušů, R.: PI autotuners based on biased relay identification. In: Proc. IFAC World Congress, Prague, Czech Republic (2005)

    Google Scholar 

  476. Pulkkinen, J., Koivo, H.N., Mäkelä, K.: Tuning of a robust PID controller—application to heating process in extruder. In: Proc. 2nd IEEE Conference on Control Applications, Vancouver, Canada, pp. 811–816 (1993)

    Chapter  Google Scholar 

  477. Ramasamy, M., Sundaramoorthy, S.: PID controller tuning for desired closed loop responses for SISO systems using impulse response. Comput. Chem. Eng. 32, 1773–1788 (2008)

    Article  Google Scholar 

  478. Rao, A.S., Chidambaram, M.: Control of unstable processes with two RHP poles, a zero and time delay. Asia-Pac. J. Chem. Eng. 1, 63–69 (2006)

    Article  Google Scholar 

  479. Rao, A.S., Chidambaram, M.: Enhanced two-degrees-of-freedom control strategy for second-order unstable processes with time delay. Ind. Eng. Chem. Res. 45, 3604–3614 (2006)

    Article  Google Scholar 

  480. Rao, A.S., Rao, V.S.R., Chidambaram, M.: Direct synthesis-based controller design for integrating processes with time delay. J. Franklin Inst. 346, 38–56 (2009)

    Article  MathSciNet  Google Scholar 

  481. Ream, N.: The calculation of process control settings from frequency characteristics. Trans. Soc. Instrum. Technol. 6(1), 19–28 (1954)

    Google Scholar 

  482. Reswick, J.B.: Disturbance-response feedback – a new control concept. Trans. ASME 78, 153–162 (1956)

    Google Scholar 

  483. Rhinehart, R.R.: The century’s greatest contributions to control practice. ISA Trans. 39, 3–13 (2000)

    Article  Google Scholar 

  484. Rice, R.C.: A rule based design methodology for the control of non-self regulating processes. Ph.D. thesis, University of Connecticut, USA (2004)

    Google Scholar 

  485. Rice, R., Cooper, D.J.: Design and tuning of PID controllers for integrating (non-self-regulating) processes. In: Proc. ISA Annual Meeting, Chicago, USA, vol. 424 (2002). Paper P057

    Google Scholar 

  486. Rice, B., Cooper, D.: Recognizing integrating (non-self regulating) process behavior (2006). Available at http://www.controlguru.com/wp/p79.html. Cited 4 January 2011

  487. Rice, R., Cooper, D.J.: Improve control of liquid level loops. Chemical Eng. Prog. June, 54–61 (2008)

    Google Scholar 

  488. Rivera, D.E., Jun, K.S.: An integrated identification and control design methodology for multivariable process system applications. IEEE Control Syst. Mag. 20(3), 25–37 (2000)

    Article  Google Scholar 

  489. Rivera, D.E., Morari, M., Skogestad, S.: Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. 25, 252–265 (1986)

    Article  Google Scholar 

  490. Robbins, L.A.: Tune control loops for minimum variability. Chemical Eng. Prog. January, 68–70 (2002)

    Google Scholar 

  491. Rotach, Y.Va.: Calculation of the robust settings of automatic controllers. Therm. Eng. 41, 764–769 (1994)

    Google Scholar 

  492. Rotach, Y.Va.: Automatic tuning of PID-controllers—expert and formal methods. Therm. Eng. 42, 794–800 (1995)

    Google Scholar 

  493. Rotstein, G.E., Lewin, D.E.: Simple PI and PID tuning for open-loop unstable systems. Ind. Eng. Chem. Res. 30, 1864–1869 (1991)

    Article  Google Scholar 

  494. Rovira, A.A., Murrill, P.W., Smith, C.L.: Tuning controllers for setpoint changes. Instrum. Control Syst. 42, 67–69 (1969)

    Google Scholar 

  495. Rutherford, C.I.: The practical application of frequency response analysis to automatic process control. Proc. Inst. Mech. Eng. 162, 334–354 (1950)

    Article  Google Scholar 

  496. Sadeghi, J., Tych, W.: Deriving new robust adjustment parameters for PID controllers using scale-down and scale-up techniques with a new optimization method. In: Proc. ICSE: 16th Conference on Syst. Engineering, Coventry, UK, pp. 608–613 (2003)

    Google Scholar 

  497. Sain, S.G., Özgen, C.: Identification and tuning of processes with large deadtime. Control Comput. 20(3), 73–78 (1992)

    Google Scholar 

  498. Saito, T., Kawakami, J., Takahashi, S., Suehiro, T., Matsumoto, H., Tachibana, K.: PID controller system. US Patent No. 4,903,192 (1990)

    Google Scholar 

  499. Sakai, Y., Nakai, Y., Miyabe, A., Kawano, T.: Self-tuning controller, US Patent 4,881,160 (1989)

    Google Scholar 

  500. Schaedel, H.M.: A new method of direct PID controller design based on the principle of cascaded damping ratios. In: Proc. European Control Conference, Brussels, Belgium (1997). Paper WE-A H4

    Google Scholar 

  501. Schlegel, M.: Nová metoda pro návrh PI(D) regulátoru—teorie pro praxi (new method for the design of a PI(D) controller—theory for practice). Automatizace 41(2), 70–78 (1998) (in Czech)

    Google Scholar 

  502. Schneider, D.M.: Control of processes with time delays. IEEE Trans. Ind. Appl. 24, 186–191 (1988)

    Article  Google Scholar 

  503. Seborg, D.E., Edgar, T.F., Shah, S.L.: Adaptive control strategies for process control: a survey. AIChE J. 32, 881–913 (1986)

    Article  Google Scholar 

  504. Seborg, D.E., Edgar, T.F., Mellichamp, D.A.: Process Dynamics and Control. Wiley, New York (1989)

    Google Scholar 

  505. Seki, H., Ogawa, M., Ohshima, M.: Retuning PID temperature controller for an unstable gas-phase polyolefin reactor. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 473–478 (2000)

    Google Scholar 

  506. Setiawan, A., Albright, L.D., Phelan, R.M.: Application of pseudo-derivative-feedback algorithm in greenhouse air temperature control. Comput. Electron. Agric. 26, 283–302 (2000)

    Article  Google Scholar 

  507. Shamsuzzoha, M., Lee, M.: IMC based control system design of PID cascaded filter. In: Proc. SICE-ICASE International Joint Conference, Busan, Korea, pp. 2485–2490 (2006)

    Chapter  Google Scholar 

  508. Shamsuzzoha, M., Lee, M.: Design of robust PID controllers for unstable processes. In: Proc. SICE-ICASE International Joint Conference, Busan, Korea, pp. 3324–3329 (2006)

    Chapter  Google Scholar 

  509. Shamsuzzoha, M., Lee, M.: Design of robust PID controller for the unstable dead time dominant processes. Theories Appl. Chem. Eng. 12(2), 1478–1481 (2006)

    Google Scholar 

  510. Shamsuzzoha, M., Lee, M.: Tuning of integrating and integrating processes with dead time and inverse response. Theories Appl. Chem. Eng. 12(2), 1482–1485 (2006)

    Google Scholar 

  511. Shamsuzzoha, M., Lee, M.: PID controller design strategy for first order time delay processes. Theories Appl. Chem. Eng. 13(1), 121–124 (2007)

    Google Scholar 

  512. Shamsuzzoha, M., Lee, M.: Enhanced performance for two-degree-of-freedom control scheme for second order unstable processes with time delay. In: Proc. International Conference on Control, Automation and Syst., Seoul, Korea, pp. 240–245 (2007)

    Chapter  Google Scholar 

  513. Shamsuzzoha, M., Lee, M.: IMC-PID controller design for improved disturbance rejection of time delayed processes. Ind. Eng. Chem. Res. 46, 2077–2081 (2007)

    Article  Google Scholar 

  514. Shamsuzzoha, M., Lee, M.: An enhanced performance PID filter controller for first order time delay processes. J. Chem. Eng. Jpn. 40(6), 501–510 (2007)

    Article  Google Scholar 

  515. Shamsuzzoha, M., Lee, M.: PID controller design for integrating processes with time delay. Korean J. Chem. Eng. 25(4), 637–645 (2008)

    Article  Google Scholar 

  516. Shamsuzzoha, M., Lee, M.: Design of advanced PID controller for enhanced disturbance rejection of second-order processes with time delay. AIChE J. 54(6), 1526–1536 (2008)

    Article  Google Scholar 

  517. Shamsuzzoha, M., Skogestad, S.: The setpoint overshoot method: a simple and fast closed-loop approach for PID tuning. J. Process Control 20, 1220–1234 (2010)

    Article  Google Scholar 

  518. Shamsuzzoha, M., Lee, K., Lee, M., Lee, J.: Design of IMC filter for improved disturbance rejection of PID controller. Theories Appl. Chem. Eng. 10(2), 1288–1291 (2004)

    Google Scholar 

  519. Shamsuzzoha, M., Lee, M., Lee, J.: IMC-PID controller tuning for improved disturbance rejection of unstable time delay processes. Theories Appl. Chem. Eng. 11(2), 1782–1785 (2005)

    Google Scholar 

  520. Shamsuzzoha, M., Park, J., Lee, M.: IMC based method for control system design of PID cascaded filter. Theories Appl. Chem. Eng. 12(1), 111–114 (2006)

    Google Scholar 

  521. Shamsuzzoha, M., Park, J., Lee, M.: PID controller design for unstable process with negative/positive zero. Theories Appl. Chem. Eng. 12(2), 1474–1477 (2006)

    Google Scholar 

  522. Shamsuzzoha, M., Lee, M., Park, J.: Robust PID controller design of time delay processes with/without zero. In: Proc. IEEE International Conference on Industrial Technol, pp. 2256–2261 (2006)

    Chapter  Google Scholar 

  523. Shamsuzzoha, M., Jeon, J., Lee, M.: Improved analytical PID controller design for the second order unstable process with time delay. In: Proc. European Symposium on Computer Aided Process Engineering, Bucharest, Romania, pp. 1–6 (2007)

    Google Scholar 

  524. Shamsuzzoha, M., Yoon, M., Lee, M.: Analytical controller design of integrating and first order unstable time delay process. In: Preprints Proc. 8th International IFAC Symposium on Dynamics and Control of Process Syst, Cancún, Mexico, vol. 2, pp. 397–402 (2007)

    Google Scholar 

  525. Shen, J.-C.: Tuning PID controller for a plant with under-damped response. In: Proc. IEEE International Conference on Control Applications, Hawaii, USA, pp. 115–120 (1999)

    Google Scholar 

  526. Shen, J.-C.: New tuning method for PID control of a plant with underdamped response. Asian J. Control 2(1), 31–41 (2000)

    Article  Google Scholar 

  527. Shen, J.-C.: New tuning method for PID controller. ISA Trans. 41, 473–484 (2002)

    Article  Google Scholar 

  528. Shi, J., Lee, W.S.: IMC-PID controllers for first-order plus dead-time processes: a simple design with guaranteed phase margin. In: Proc. IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing, China, pp. 1397–1400 (2002)

    Google Scholar 

  529. Shi, J., Lee, W.S.: Set point response and disturbance rejection tradeoff for second-order plus dead time processes. In: Proc. 5th Asian Control Conference, Melbourne, Australia, pp. 881–887 (2004)

    Google Scholar 

  530. Shigemasa, T., Iino, Y., Kanda, M.: Two degrees of freedom PID auto-tuning controller. In: Proc. ISA International Conference and Exhibition. Advances in Instrumentation and Control, pp. 703–711 (1987)

    Google Scholar 

  531. Shin, C.-H., Yoon, M.-H., Park, I.-S.: Automatic tuning algorithm of the PID controller using two Nyquist points identification. In: Proc. Society of Instrument and Control Engineers Annual Conference, Tokyo, Japan, pp. 1225–1228 (1997)

    Google Scholar 

  532. Shinskey, F.G.: Process Control Systems—Application, Design and Tuning, 3rd edn. McGraw-Hill, New York (1988)

    Google Scholar 

  533. Shinskey, F.G.: Feedback Controllers for the Process Industries. McGraw-Hill, New York (1994)

    Google Scholar 

  534. Shinskey, F.G.: Process Control Systems—Application, Design and Tuning, 4th edn. McGraw-Hill, New York (1996)

    Google Scholar 

  535. Shinskey, F.G.: PID-deadtime control of distributed processes. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 14–18 (2000)

    Google Scholar 

  536. Shinskey, F.G.: PID-deadtime control of distributed processes. Control Eng. Pract. 9, 1177–1183 (2001)

    Article  Google Scholar 

  537. Shinskey, F.G.: Process control diagnostics (2003). Available at http://www.isa.org/CustomSource/ISA/Div_PDFs/PDF_News/CPI_1.pdf. Cited 4 January 2011

  538. Sklaroff, M.: Adaptive controller in a process control system and a method therefor. US Patent 5,170,341 (1992)

    Google Scholar 

  539. Skoczowski, S.: Model following PID control with a fast model. In: Proc. 6th Portuguese Conference on Automatic Control, pp. 494–499 (2004)

    Google Scholar 

  540. Skoczowski, S., Tarasiejski, L.: Tuning of PID controllers based on gain and phase margin specifications using Strejc’s process model with time delay. In: Proc. 3rd International Symposium on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 765–770 (1996)

    Google Scholar 

  541. Skogestad, S.: Probably the best simple PID tuning rules in the world. AIChE Annual Meeting, Reno, USA (2001). Available at http://www.nt.ntnu.no/users/skoge/publications/2001/skogestad_reno/tuningpaper.pdf. Cited 4 January 2011

  542. Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13, 291–309 (2003)

    Article  Google Scholar 

  543. Skogestad, S.: Lower limit on controller gain for acceptable disturbance rejection. In: Proc. International Symposium on Advanced Control of Chemical Processes, Hong Kong, China (2004)

    Google Scholar 

  544. Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. Model. Identif. Control 25, 85–120 (2004)

    Article  MathSciNet  Google Scholar 

  545. Skogestad, S.: (2004). Available at http://www.nt.ntnu.no/users/skoge/publications/2003/tuningPID/more/extensions/oscillating.txt. Cited 4 January 2011

  546. Skogestad, S.: Tuning for smooth PID control with acceptable disturbance rejection. Ind. Eng. Chem. Res. 45, 7817–7822 (2006)

    Article  Google Scholar 

  547. Slätteke, O.: Modeling and control of the paper machine drying section. Ph.D. thesis, Lund University, Sweden (2006)

    Google Scholar 

  548. Smith, L.: A modified Smith predictor for extruded diameter control. In: InstMC Mini Symposium in UKACC International Conference on Control, Swansea, UK (1998). Lecture 5

    Google Scholar 

  549. Smith, C.L.: Intelligently tune PI controllers. Chemical Eng. August, 169–177 (2002)

    Google Scholar 

  550. Smith, C.L.: Intelligently tune PID controllers. Chemical Eng. January, 56–62 (2003)

    Google Scholar 

  551. Smith, C.A., Corripio, A.B.: Principles and Practice of Automatic Process Control, 2nd edn. Wiley, New York (1997)

    Google Scholar 

  552. Smith, C.L., Corripio, A.B., Martin, J.: Controller tuning from simple process models. Instrum. Technol. December, 39–44 (1975)

    Google Scholar 

  553. Solera, E.: Sintonización de controladores PI/PID con los criterios IAE e ITAE, para plantas de polo doble. Proyecto Eléctrico, Universidad de Costa Rica (2005). Available at http://www.eie.ucr.ac.cr/uploads/file/proybach/pb0508t.pdf. Cited 4 January 2011 (in Spanish)

  554. Somani, M.K., Kothare, M.V., Chidambaram, M.: Design formulae for PI controllers. Hung. J. Ind. Chem. 20, 205–211 (1992)

    Google Scholar 

  555. Sree, R.P., Chidambaram, M.: Simple method of tuning PI controllers for stable inverse response systems. J. Indian Inst. Sci. 83, 73–85 (2003)

    Google Scholar 

  556. Sree, R.P., Chidambaram, M.: Control of unstable bioreactor with dominant unstable zero. Chem. Biochem. Eng. Q. 17(2), 139–145 (2003)

    Google Scholar 

  557. Sree, R.P., Chidambaram, M.: A simple method of tuning PI controllers for unstable systems with a zero. Chem. Biochem. Eng. Q. 17(3), 207–212 (2003)

    Google Scholar 

  558. Sree, R.P., Chidambaram, M.: Control of unstable reactor with an unstable zero. Indian Chem. Eng. Sect. A 46(1), 21–26 (2004)

    Google Scholar 

  559. Sree, R.P., Chidambaram, M.: Set point weighted PID controllers for unstable systems. Chem. Eng. Commun. 192, 1–13 (2005)

    Article  Google Scholar 

  560. Sree, R.P., Chidambaram, M.: A simple and robust method of tuning PID controllers for integrator/dead time processes. J. Chem. Eng. Jpn. 38(2), 113–119 (2005)

    Article  Google Scholar 

  561. Sree, R.P., Chidambaram, M.: Control of Unstable Systems. Alpha Science International, Oxford (2006)

    Google Scholar 

  562. Sree, R.P., Srinivas, M.N., Chidambaram, M.: A simple method of tuning PID controllers for stable and unstable FOPTD systems. Comput. Chem. Eng. 28, 2201–2218 (2004)

    Article  Google Scholar 

  563. Srinivas, M.N., Chidambaram, M.: Set-point weighted PID controllers. In: Proc. International Conference on Quality, Reliability and Control, Mumbai, India, pp. C22-1–C22-5 (2001)

    Google Scholar 

  564. Srividya, R., Chidambaram, M.: On-line controllers tuning for integrator plus delay systems. Process Control Qual. 9, 59–66 (1997)

    Google Scholar 

  565. St. Clair, D.W.: Controller Tuning and Control Loop Performance, 2nd edn. Straight Line Control CO, Newark (1997)

    Google Scholar 

  566. Streeter, M.J., Keane, M.A., Koza, J.R.: Automatic synthesis using genetic programming of improved PID tuning rules. In: Ruano, A.D. (ed.) Preprint Proc. Intelligent Control Syst. and Signal Processing Conference, pp. 494–499 (2003)

    Google Scholar 

  567. Sung, S.W., O, J., Lee, I.-B., Lee, J., Yi, S.-H.: Automatic tuning of PID controller using second-order plus time delay model. J. Chem. Eng. Jpn. 29, 991–999 (1996)

    Article  Google Scholar 

  568. Suyama, K.: A simple design method for sampled-data PID control systems with adequate step responses. In: Proc. International Conference on Industrial Electronics, Control, Instrumentation and Automation, pp. 1117–1122 (1992)

    Chapter  Google Scholar 

  569. Suyama, K.: A simple design method for sampled-data I-PD control systems. In: Proc. Annual Conference of the IEEE, Industrial Electronics Society, Hawaii, USA, pp. 2293–2298 (1993)

    Google Scholar 

  570. Syrcos, G., Kookos, I.K.: PID controller tuning using mathematical programming. Chem. Eng. Process. 44, 41–49 (2005)

    Article  Google Scholar 

  571. Tachibana, Y.: Identification of a system with dead time and its application to auto tuner. Electr. Eng. Jpn. 104, 128–137 (1984)

    Article  Google Scholar 

  572. Taguchi, H., Araki, M.: Two-degree-of-freedom PID controllers—their functions and optimal tuning. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 95–100 (2000)

    Google Scholar 

  573. Taguchi, H., Araki, M.: On tuning of two-degree-of-freedom PID controllers with consideration on location of disturbance input. Trans. Soc. Instrum. Control Eng. 38(5), 441–446 (2002) (in Japanese)

    Google Scholar 

  574. Taguchi, H., Doi, M., Araki, M.: Optimal parameters of two-degrees-of-freedom PID control systems. Trans. Soc. Instrum. Control Eng. 23(9), 889–895 (1987) (in Japanese)

    Google Scholar 

  575. Taguchi, H., Kokawa, M., Araki, M.: Optimal tuning of two-degree-of-freedom PD controllers. In: Proc. Asian Control Conference, Singapore, pp. 268–273 (2002)

    Google Scholar 

  576. Takatsu, H., Itoh, T.: Future needs for control theory in industry—report of the control technology survey of Japanese industry. IEEE Trans. Control Syst. Technol. 7(3), 298–305 (1999)

    Article  Google Scholar 

  577. Tan, K.K., Lee, T.H., Wang, Q.G.: Enhanced automatic tuning procedure for process control of PI/PID controller. AIChE J. 42, 2555–2562 (1996)

    Article  Google Scholar 

  578. Tan, W., Liu, J., Sun, W.: PID tuning for integrating processes. In: Proc. IEEE International Conference on Control Applications, Trieste, Italy, vol. 2, pp. 873–876 (1998)

    Google Scholar 

  579. Tan, W., Liu, K., Tam, P.K.S.: PID tuning based on loop-shaping H control. IEE Proc., Control Theory Appl. 145(6), 485–490 (1998)

    Article  Google Scholar 

  580. Tan, W., Yuan, Y., Niu, Y.: Tuning of PID controller for unstable process. In: Proc. IEEE International Conference on Control Applications, Hawaii, USA, pp. 121–124 (1999)

    Google Scholar 

  581. Tan, K.K., Wang, Q.G., Hang, C.C., Hägglund, T.J.: Advances in PID Control, Advances in Industrial Control Series. Springer, London (1999)

    Google Scholar 

  582. Tan, K.K., Lee, T.H., Jiang, X.: On-line relay identification, assessment and tuning of PID controller. J. Process Control 11, 483–496 (2001)

    Article  Google Scholar 

  583. Tang, W., Shi, S., Wang, M.: Autotuning PID control for large time-delay processes and its application to paper basis weight control. Ind. Eng. Chem. Res. 41, 4318–4327 (2002)

    Article  Google Scholar 

  584. Tang, W., Wang, M., Chao, Y., He, L., Itoh, H.: A study on the internal relationship among Smith predictor, Dahlin controller & PID. In: Proc. IEEE International Conference on Automation and Logistics, Jinan, China, pp. 3101–3106 (2007)

    Chapter  Google Scholar 

  585. Tavakoli, S., Banookh, A.: Robust PI control design using particle swarm optimization. J. Comput. Sci. Eng. 1(1), 36–41 (2010)

    Google Scholar 

  586. Tavakoli, S., Fleming, P.: Optimal tuning of PI controllers for first order plus dead time/long dead time models using dimensional analysis. In: Proc. European Control Conference, Cambridge, UK (2003)

    Google Scholar 

  587. Tavakoli, S., Tavakoli, M.: Optimal tuning of PID controllers for first order plus time delay models using dimensional analysis. In: Proc. 4th IEEE International Conference on Control and Automation, Canada, pp. 942–946 (2003)

    Google Scholar 

  588. Tavakoli, S., Griffin, I., Fleming, P.J.: Robust PI controller for load disturbance rejection and setpoint regulation. In: Proc. IEEE Conference on Control Applications, Toronto, Canada, pp. 1015–1020 (2005)

    Google Scholar 

  589. Tavakoli, S., Griffin, I., Fleming, P.J.: Tuning of decentralized PI (PID) controllers for TITO processes. Control Eng. Pract. 14, 1069–1080 (2006)

    Article  Google Scholar 

  590. Tavakoli, S., Griffin, I., Fleming, P.J.: Multi-objective optimization approach to the PI tuning problem. In: Proc. IEEE Congress on Evolutionary Computation, Singapore, pp. 3165–3171 (2007)

    Chapter  Google Scholar 

  591. Thomasson, F.Y.: Tuning guide for basic control loops. In: Proc. Process Control, Electrical and Information Conference, pp. 137–148 (1997)

    Google Scholar 

  592. Thyagarajan, T., Yu, C.-C.: Improved autotuning using the shape factor from relay feedback. Ind. Eng. Chem. Res. 42, 4425–4440 (2003)

    Article  Google Scholar 

  593. Thyagarajan, T., Esakkiappan, C., Sujatha, V.: Modelling and control of inverse response process with time delay using relay feedback test. In: Proc. International Conference on Modelling, Identification and Control, Okayama, Japan, pp. 494–499 (2010)

    Google Scholar 

  594. Tinham, B.: Tuning PID controllers. Control Instrum. September, 79–83 (1989)

    Google Scholar 

  595. Trybus, L.: A set of PID tuning rules. Arch. Control Sci. 15(LI)(1), 5–17 (2005)

    MathSciNet  Google Scholar 

  596. Tsang, K.M., Rad, A.B.: A new approach to auto-tuning of PID controllers. Int. J. Syst. Sci. 26(3), 639–658 (1995)

    Article  Google Scholar 

  597. Tsang, K.M., Rad, A.B., To, F.W.: Online tuning of PID controllers using delayed state variable filters. In: Proc. IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering, Beijing, China, vol. 4, pp. 415–419. (1993)

    Google Scholar 

  598. Tyreus, B.D., Luyben, W.L.: Unusual dynamics of a reactor/preheater process with deadtime, inverse response and openloop instability. J. Process Control 3(4), 241–251 (1992)

    Article  Google Scholar 

  599. Umamaheswari, S., Palanisamy, V., Chidambaram, M.: A simple method of tuning PI controllers for interval plant of cold rolling mill. Int. J. Recent Trends Eng. 1(4), 41–45 (2009)

    Google Scholar 

  600. Umamaheswari, S., Palanisamy, V., Chidambaram, M.: A simple method of tuning PID controllers for interval plant of cold rolling mill. In: Proc. International Conference on Control, Automation, Communication and Energy Conservation, Erode, India, pp. 1–6 (2009)

    Google Scholar 

  601. Unar, M.A., Murray-Smith, D.J., Shah, S.F.A.: Technical Report CSC-96016 (1996). Available at http://www.mech.gla.ac.uk/Research/Control/Publications/Rabstracts/abs96016.html. Cited 14 December 2010

  602. Universal Dynamic Technologies: Brainwave: The New Concept in Process Control. Sales Literature (1998)

    Google Scholar 

  603. Urrea, R., Castellanos-Sahagun, E., Alvarez, J., Alvarez-Ramirez, J.: Distillate cascade composition control using a two-temperature measurement secondary component. Ind. Eng. Chem. Res. 45, 6828–6841 (2006)

    Article  Google Scholar 

  604. Valentine, C.C., Chidambaram, M.: Robust PI and PID control of stable first order plus time delay systems. Indian Chem. Eng. Sect. A 39(1), 9–14 (1997)

    Google Scholar 

  605. Valentine, C.C., Chidambaram, M.: PID control of unstable time delay systems. Chem. Eng. Commun. 162, 63–74 (1997)

    Article  Google Scholar 

  606. Valentine, C.C., Chidambaram, M.: Robust control of unstable first order plus time delay systems. Indian Chem. Eng. Sect. A 40(1), 19–23 (1998)

    Google Scholar 

  607. Van der Grinten, P.M.E.M.: Finding optimum controller settings. Control Eng. December, 51–56 (1963)

    Google Scholar 

  608. VanDoren, V.J.: Ziegler–Nichols methods facilitate loop tuning. Control Eng. December 1998

    Google Scholar 

  609. Van Overschee, P., De Moor, B.: RaPID: the end of heuristic PID tuning. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 687–692 (2000)

    Google Scholar 

  610. Velázquez-Figueroa, C.: Automated rule-based dynamic modelling and controller design. Ph.D. thesis, University of Connecticut, USA (1997)

    Google Scholar 

  611. Venkatashankar, V., Chidambaram, M.: Design of P and PI controllers for unstable first order plus time delay systems. Int. J. Control 60, 137–144 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  612. Vilanova, R.: PID controller tuning rules for robust step-response of first-order-plus-dead-time models. In: Proc. American Control Conference, Minneapolis, USA, pp. 256–261 (2006)

    Google Scholar 

  613. Vilanova, R., Balaguer, P.: ISA-PID controller tuning: a combined min-max/ise approach. In: Proc. IEEE International Conference on Control Applications, Munich, Germany, pp. 2956–2961 (2006)

    Chapter  Google Scholar 

  614. Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc., Control Theory Appl. 148(1), 180–184 (2001)

    Article  Google Scholar 

  615. Visioli, A.: Improving the load disturbance rejection performances of IMC-tuned PID controllers. In: Proc. IFAC World Congress, Barcelona, Spain, pp. 295–300 (2002)

    Google Scholar 

  616. Visioli, A.: Experimental evaluation of a Plug&Control strategy for level control. In: Proc. IFAC World Congress, Prague, Czech Republic (2005)

    Google Scholar 

  617. Visioli, A.: Practical PID Control. Springer, London (2006)

    MATH  Google Scholar 

  618. Vítečková, M.: Seřízení číslicových I analogových regulátorů pro regulované soustavy s dopravním zpoždčním [Digital and analog controller tuning for processes with time delay]. Automatizace 42(2), 106–111 (1999) (in Czech)

    Google Scholar 

  619. Vítečková, M.: Ukazatelé kvality pro regulační obvody seřízené metodou inverze dynamiki. In: Proc. ASR 2001 Seminar, Instruments and Control, Ostrava, Czech Republic, pp. 1–6 (2001) (in Czech)

    Google Scholar 

  620. Vítečková, M.: Simple PI and PID controller tuning. Sb. Věd. Pr. Vysoké šk. Báň.-Tech. Univ. Ostrava, Řada Strojní 2(LII), 225–230 (2006). Available at http://www.fs.vsb.cz/transactions/2006-2/1562_VITECKOVA_Miluse.pdf. Cited 4 January 2011

    Google Scholar 

  621. Vítečková, M., Víteček, A.: Analytical controller tuning method for proportional non-oscillatory plants with time delay. In: Proc. International Carpathian Control Conference, Malenovice, Czech Republic, pp. 297–302 (2002)

    Google Scholar 

  622. Vítečková, M., Víteček, A.: Analytical digital and analog controller tuning method for proportional non-oscillatory plants with time delay. In: Proc. 2nd IFAC Conference on Control Syst. Design, Bratislava, Slovak Republic, pp. 59–64 (2003)

    Google Scholar 

  623. Vítečková, M., Víteček, A.: Controller tuning for integral plus time delay plants. In: Sborník vědeckých prací Vysoké školy báňské—Technické univerzity Ostrava, Ostrava, Czech Republic, pp. 159–166 (2007). Available at http://www.fs.vsb.cz/transactions/2007-2/1571_VITECKOVA_Miluse_VITECEK_Antonin.pdf. Cited 4 January 2011

    Google Scholar 

  624. Vítečková, M., Víteček, A.: Two-degree of freedom controller tuning for integral plus time delay plants. ICIC Express Lett. 2(3), 225–229 (2008)

    Google Scholar 

  625. Vítečková, M., Víteček, A., Smutný, L.: Controller tuning for controlled plants with time delay. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 283–288 (2000)

    Google Scholar 

  626. Vítečková, M., Víteček, A., Smutný, L.: Simple PI and PID controllers tuning for monotone self-regulating plants. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 289–294 (2000)

    Google Scholar 

  627. Vivek, S., Chidambaram, M.: An improved relay autotuning of PID controllers for unstable FOPDT systems. Comput. Chem. Eng. 29, 2060–2068 (2005)

    Article  Google Scholar 

  628. Voda, A., Landau, I.D.: The autocalibration of PI controllers based on two frequency measurements. Int. J. Adapt. Control Signal Process. 9, 395–421 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  629. Vrančić, D.: Design of anti-windup and bumpless transfer protection. Part II: PID controller tuning by multiple integration method. PhD thesis, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia (1996)

    Google Scholar 

  630. Vrančić, D., Lumbar, S.: Improving PID controller disturbance rejection by means of magnitude optimum. Report DP-8955. J. Stefan Institute, Ljubljana, Slovenia (2004)

    Google Scholar 

  631. Vrančić, D., Peng, Y., Strmčnik, S., Hanus, R.: A new tuning method for PI controllers based on a process step response. In: Proc. CESA ’96 IMACS MultiConference Symposium on Control, Optimisation and Supervision, Lille, France, vol. 2, pp. 790–794 (1996)

    Google Scholar 

  632. Vrančić, D., Peng, Y., Strmčnik, S., Juričić, D.: A multiple integration tuning method for filtered PID controller. In: Preprints Proc. IFAC 14th World Congress, Beijing, China (1999). Paper 3b-02-3

    Google Scholar 

  633. Vrančić, D., Kocijan, J., Strmčnik, S.: Simplified disturbance rejection tuning method for PID controllers. In: Proc. 5th Asian Control Conference, Melbourne, Australia, vol. 1, pp. 492–497 (2004)

    Google Scholar 

  634. Vrančić, D., Kristiansson, B., Strmčnik, S.: Reduced MO tuning method for PID controllers. In: Proc. 5th Asian Control Conference, Melbourne, Australia, vol. 1, pp. 460–465 (2004)

    Google Scholar 

  635. Wade, H.L.: Regulatory and Advanced Regulatory Control: System Development. ISA, North Carolina, USA (1994)

    Google Scholar 

  636. Wang, X.-S.: PID controller tuning method for improving performance. Opt. Precis. Eng. 8(4), 381–384 (2000) (in Chinese)

    Google Scholar 

  637. Wang, J.-Y.: Control system design using the NCD technique. Masters thesis, Feng Chia University, Taiwan. Available at http://ethesys.lib.fcu.edu.tw. Cited 25 October 2006

  638. Wang, Y.-G., Cai, W.-J.: PID tuning for integrating processes with sensitivity specification. In: Proc. IEEE Conference on Decision and Control, Orlando, USA, pp. 4087–4091 (2001)

    Google Scholar 

  639. Wang, Y.-G., Cai, W.-J.: Advanced proportional-integral-derivative tuning for integrating and unstable processes with gain and phase margin specifications. Ind. Eng. Chem. Res. 41, 2910–2914 (2002)

    Article  Google Scholar 

  640. Wang, T.-S., Clements, W.C.: Adaptive multivariable PID control of a distillation column with unknown and varying dead time. Chem. Eng. Commun. 132, 1–13 (1995)

    Article  Google Scholar 

  641. Wang, L., Cluett, W.R.: Tuning PID controllers for integrating processes. IEE Proc., Control Theory Appl. 144(5), 385–392 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  642. Wang, L., Cluett, W.R.: From Plant Data to Process Control. Taylor and Francis, New York (2000)

    Google Scholar 

  643. Wang, H., Jin, X.: Direct synthesis approach of PID controller for second-order delayed unstable processes. In: Proc. 5th World Congress on Intelligent Control and Automation, Hangzhou, China, pp. 19–23 (2004)

    Chapter  Google Scholar 

  644. Wang, Y.-G., Shao, H.-H.: PID autotuner based on gain- and phase-margin specification. Ind. Eng. Chem. Res. 38, 3007–3012 (1999)

    Article  Google Scholar 

  645. Wang, Y.-G., Shao, H.-H.: Automatic tuning of optimal PI controllers. In: Proc. IEEE Conference on Decision and Control, Phoenix, Arizona, pp. 3802–3803 (1999)

    Google Scholar 

  646. Wang, Y.-G., Shao, H.-H.: Optimal tuning for PI controller. Automatica 36, 147–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  647. Wang, Y.-G., Shao, H.-H.: PID auto-tuner based on sensitivity specification. Trans. Inst. Chem. Eng. 78(A), 312–316 (2000)

    Article  Google Scholar 

  648. Wang, Y.-G., Xu, X.-M.: PID tuning for unstable processes with sensitivity specification. In: Proc. Chinese Control and Decision Conference, Guilin, China, pp. 3460–3464 (2009)

    Chapter  Google Scholar 

  649. Wang, F.-S., Juang, W.-S., Chan, C.-T.: Optimal tuning of PID controllers for single and cascade control loops. Chem. Eng. Commun. 132, 15–34 (1995)

    Article  Google Scholar 

  650. Wang, L., Barnes, T.J.D., Cluett, W.R.: New frequency-domain design method for PID controllers. IEE Proc., Control Theory Appl. 142, 265–271 (1995)

    Article  MATH  Google Scholar 

  651. Wang, Q.-G., Lee, T.-H., Fung, H.-W., Bi, Q., Zhang, Y.: PID tuning for improved performance. IEEE Trans. Control Syst. Technol. 7(4), 457–465 (1999)

    Article  Google Scholar 

  652. Wang, Q.-G., Zhang, Y., Guo, X.: Robust closed-loop controller auto-tuning. In: Proc. 15th IEEE International Symposium on Intelligent, Control, Rio, Patras, Greece, pp. 133–138 (2000)

    Google Scholar 

  653. Wang, Y.-G., Shao, H.-H., Wang, J.: PI tuning for processes with large dead time. In: Proc. American Control Conference, Chicago, USA, pp. 4274–4278 (2000)

    Google Scholar 

  654. Wang, Q.-G., Zhang, Y., Guo, X.: Robust closed-loop identification with application to auto-tuning. J. Process Control 11, 519–530 (2001)

    Article  Google Scholar 

  655. Wang, Y.-G., Cai, W.-J., Shi, Z.-G.: PID autotuning for integrating processes with specifications on gain and phase margins. In: Proc. American Control Conference, Arlington, USA, pp. 2181–2185 (2001)

    Google Scholar 

  656. Wang, Y., Schinkel, M., Schmitt-Hartmann, T., Hunt, K.J.: PID and PID-like controller design by pole assignment within D-stable regions. Asian J. Control 4(4), 423–432 (2002)

    Article  Google Scholar 

  657. Wang, J.-G., Zhang, J.-G., Zhao, Z.-C.: Extended IMC-PID control for integrator and dead time process. Electr. Mach. Control 9(2), 133–135 (2005) (in Chinese)

    MathSciNet  Google Scholar 

  658. Wang, C., Luo, Y., Chen, Y.: Fractional order proportional integral (FOPI) and [proportional integral] (FO[PI]) controller designs for first order plus time delay (FOPTD) systems. In: Proc. Chinese Control and Decision Conference, Guilin, China, pp. 329–334 (2009)

    Chapter  Google Scholar 

  659. Wills, D.M.: Tuning maps for three-mode controllers. Control Eng. April, 104–108 (1962)

    Google Scholar 

  660. Wills, D.M.: A guide to controller tuning. Control Eng. August, 93–95 (1962)

    Google Scholar 

  661. Wilton, S.R.: Controller tuning. ISA Trans. 38, 157–170 (1999)

    Article  Google Scholar 

  662. Witt, S.D., Waggoner, R.C.: Tuning parameters for non-PID three-mode controllers. Hydrocarb. Process. June, 74–78 (1990)

    Google Scholar 

  663. Wojsznis, W.K., Blevins, T.L.: System and method for automatically tuning a process controller. US Patent Number 5,453,925 (1995)

    Google Scholar 

  664. Wojsznis, W.K., Blevins, T.L., Thiele, D.: Neural network assisted control loop tuner. In: Proc. IEEE International Conference on Control Applications, Hawaii, USA, vol. 1, pp. 427–431 (1999)

    Google Scholar 

  665. Wolfe, W.A.: Controller settings for optimum control. Trans. ASME 73, 413–418 (1951)

    Google Scholar 

  666. Xing, J., Wang, P., Wang, L.: A self-tuning PID controller based on expert system. In: Proc. IFAC New Technologies for Computer Control Conference, Hong Kong, China, pp. 479–484 (2001)

    Google Scholar 

  667. Xu, J., Shao, H.: Advanced PID tuning for integrating processes with a new robustness specification. In: Proc. American Control Conference, Denver, USA, pp. 3961–3966 (2003)

    Google Scholar 

  668. Xu, J., Shao, H.: Advanced PID tuning for unstable processes based on a new robustness specification. In: Proc. American Control Conference, Denver, USA, pp. 368–372 (2003)

    Google Scholar 

  669. Xu, J., Shao, H.: A novel method of PID tuning for integrating processes. In: Proc. 42nd IEEE Conference on Decision and Control, Maui, USA, pp. 139–142 (2003)

    Google Scholar 

  670. Xu, J., Shao, H.: A new tuning method of PID controller for integrating processes. Chin. J. Sci. Instrum. 25(6), 714–716 (2004) (in Chinese)

    Google Scholar 

  671. Xu, J., Shao, H.: A new tuning method of PID controller for integrating processes. Chin. J. Sci. Instrum. 25(6), 720 (2004) (in Chinese)

    Google Scholar 

  672. Xu, J., Shao, H.: PI tuning for large dead-time processes with a new robustness specification. J. Syst. Eng. Electron. 15(3), 333–336 (2004)

    Google Scholar 

  673. Xu, J.-H., Sun, R., Shao, H.-H.: PI controller tuning for large dead-time processes. Control Decis. 19(1), 99–101 (2004) (in Chinese)

    Google Scholar 

  674. Xu, Y., Deng, H., Zhang, P., Yang, J.: Tuning PI/PID active queue management controllers supporting TCP/IP flows. In: Proc. International Conference on Communications, Circuits and Syst., Hong Kong, China, vol. 1, pp. 630–634 (2005)

    Google Scholar 

  675. Yang, J.C.-Y., Clarke, D.W.: Control using self-validating sensors. Trans. Inst. Meas. Control 18, 15–23 (1996)

    Article  Google Scholar 

  676. Yang, P., Pan, S.: New PID parameters tuning formulae for relay feedback self-tuning. In: Proc. IEEE International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, pp. 567–569 (2008)

    Google Scholar 

  677. Yi, C., De Moor, B.L.R.: Robustness analysis and control system design for a hydraulic servo system. IEEE Trans. Control Syst. Technol. 2(3), 183–197 (1994)

    Article  Google Scholar 

  678. Young, A.J.: An Introduction to Process Control System Design. Longman, Green, London (1955)

    Google Scholar 

  679. Yu, S.W.: Optimal PI tuning for load disturbances. J. Chin. Inst. Chem. Eng. 19(6), 349–357 (1988)

    Google Scholar 

  680. Yu, C.-C.: Autotuning of PID Controllers. Advances in Industrial Control Series. Springer, London (1999)

    MATH  Google Scholar 

  681. Yu, C.-C.: Autotuning of PID Controllers, 2nd edn. Advances in Industrial Control Series. Springer, London (2006)

    Google Scholar 

  682. Yu, L., Ma, M., Hu, W., Shi, Z., Shu, Y.: Design of parameter tunable robust controller for active queue management based on H control theory. J. Netw. Comput. Appl. (2010). doi:10.1016/j.jnca.2010.10.006

    Google Scholar 

  683. Žáková, K.: One type of controller design for delayed double integrator system. WSEAS Trans. Syst. Control 1(3), 62–69 (2008)

    Google Scholar 

  684. Zamani, Z.T., Moshiri, B., Fatehi, A., Sedigh, A.K.: Relay feedback based monitoring and autotuning of processes with gain nonlinearity. In: Proc. UK Automatic Control Conference, Manchester, UK (2008)

    Google Scholar 

  685. Zhang, D.: Process dynamics and controller selection of DCS. In: Proc. ISA Advances in Instrumentation and Control Conference, Anaheim, USA, vol. 49, Part 2, pp. 231–240 (1994)

    Google Scholar 

  686. Zhang, W.: Analytical design for process control. Post-doctoral Research Report (1998). Available at http://automation.sjtu.edu.cn/wdzhang/pdfrpt.pdf. Cited 29 September 2009 (in Chinese)

  687. Zhang, W.: Optimal design of the refined Ziegler–Nichols proportional-integral-derivative controller for stable and unstable processes with time delays. Ind. Eng. Chem. Res. 45, 1408–1419 (2006)

    Article  Google Scholar 

  688. Zhang, W., Xu, X.: H PID controller design for runaway processes with time delay. ISA Trans. 41, 317–322 (2002)

    Article  Google Scholar 

  689. Zhang, W.D., Sun, Y.X., Xu, X.M.: Modified PID controller based on H theory. In: Proc. IEEE International Conference on Industrial Technol, pp. 9–12 (1996)

    Google Scholar 

  690. Zhang, G., Shao, C., Chai, T.: A new method for independently tuning PID parameters. In: Proc. Conference on Decision and Control, Kobe, Japan, pp. 2527–2532 (1996)

    Google Scholar 

  691. Zhang, W., Sun, Y., Xu, X.: PID control for integrator and dead time process. Acta Autom. Sin. 25(4), 518–523 (1999) (in Chinese)

    MathSciNet  Google Scholar 

  692. Zhang, W., Xu, X., Sun, Y.: Quantitative performance design for integrating processes with time delay. Automatica 35, 719–723 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  693. Zhang, W., Xu, X., Zhang, W.: PID design of unstable processes by using closed loop constraints. J. Shanghai Jiaotong Univ. 34(5), 589–592 (2000)

    MATH  Google Scholar 

  694. Zhang, J.-G., Liu, Z.-Y., Pei, R.: Two-degree-of-freedom PID control for integrator and dead time process. Control Decis. 17(6), 886–889 (2002) (in Chinese)

    Google Scholar 

  695. Zhang, J., Li, L., Chen, Z., Zhao, Z.: IMC tuning of two-degree-of-freedom regulator. Chin. J. Sci. Instrum. 23(1), 28–30 (2002) (in Chinese)

    Google Scholar 

  696. Zhang, J., Li, L., Chen, Z., Zhao, Z.: IMC tuning of two-degree-of-freedom regulator. Chin. J. Sci. Instrum. 23(1), 48 (2002) (in Chinese)

    Google Scholar 

  697. Zhang, W., Xi, Y., Yang, G., Xu, X.: Design PID controllers for desired time-domain or frequency-domain response. ISA Trans. 41, 511–520 (2002)

    Article  Google Scholar 

  698. Zhang, W., Gu, D., Xu, X.: A unified approach to design the RZN PID controller for stable and unstable processes with time delay. In: Proc. IEEE Conference on Decision and Control, Maui, USA, pp. 4080–4081 (2003)

    Google Scholar 

  699. Zhang, F.-B., Wang, G.-D., Zhang, D.-H., Liu, X.-H.: Optimal ITAE tuning formulae for parameters of PID controller. J. Northeast. Univ. Nat. Sci. 26(8), 755–758 (2005)

    MathSciNet  Google Scholar 

  700. Zhang, J., Wang, J., Zhao, Z.: A novel two-degree-of-freedom PID controller for integrator and dead time process. In: Proc. World Congress on Intelligent Control and Automation, Dalian, China, pp. 6388–6391 (2006)

    Chapter  Google Scholar 

  701. Zhao, Y., Jia, L., Cai, W.: The system identification and PID auto-tuning for unstable processes. In: Proc. IEEE Conference on Industrial Electronics and Applications, Singapore, pp. 176–180 (2008)

    Chapter  Google Scholar 

  702. Zhong, Q.-C., Li, H.-X.: 2-degree-of-freedom proportional-integral-derivative-type controller incorporating the Smith principle for processes with dead time. Ind. Eng. Chem. Res. 41, 2448–2454 (2002)

    Article  Google Scholar 

  703. Zhou, X., Dong, X., Zhang, Y., Fang, Y.: Automatic tuning of PI controller for atomic force microscope based on relay with hysteresis. In: Proc. IEEE International Conference on Control Applications, St. Petersburg, Russia, pp. 1271–1275 (2009)

    Google Scholar 

  704. Zhuang, M.: Computer-aided PID controller design. Ph.D. thesis. University of Sussex, UK (1992)

    Google Scholar 

  705. Zhuang, M., Atherton, D.P.: Automatic tuning of optimum PID controllers. IEE Proc. Part D. Control Theory Appl. 140, 216–224 (1993)

    Article  MATH  Google Scholar 

  706. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759–768 (1942)

    Google Scholar 

  707. Zou, H., Brigham, S.E.: Process control system with asymptotic auto-tuning. US Patent Number 5,818,714 (1998)

    Google Scholar 

  708. Zou, H., Hedstrom, K.P., Warrior, J., Hays, C.L.: Field based process control system with auto-tuning. US Patent Number 5,691,896 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan O’Dwyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

O’Dwyer, A. (2012). An Overview of Tuning Rules for the PI and PID Continuous-Time Control of Time-Delayed Single-Input, Single-Output (SISO) Processes. In: Vilanova, R., Visioli, A. (eds) PID Control in the Third Millennium. Advances in Industrial Control. Springer, London. https://doi.org/10.1007/978-1-4471-2425-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2425-2_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2424-5

  • Online ISBN: 978-1-4471-2425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics