Skip to main content

Structure, Function, and Development of Blood Vessels: Lessons for Tissue Engineering

  • Chapter
  • First Online:
Engineering in Translational Medicine

Abstract

The establishment of blood vessel networks is a matter of life and death for tissues and organisms. Failure to form a functional vascular network causes early death of embryos, and also dysfunction of endothelial cells (ECs) contributes to many diseases, including stroke, thrombosis, and atherosclerosis. Furthermore, there is a considerable clinical need for alternatives to the autologous vein and artery tissues used for vascular reconstructive surgeries such as lower limb bypass, arteriovenous shunts, and repairs of congenital defects to the pulmonary outflow tract. So far, synthetic materials, particularly in small-diameter applications, have not matched the efficacy of native tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395

    Article  Google Scholar 

  2. Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693

    Article  Google Scholar 

  3. Maton A (1994) Human biology and health, 3rd edn. Englewood Cliffs, Prentice Hall, New Jersey

    Google Scholar 

  4. Ruoslahti E, Engvall E (1997) Integrins and vascular extracellular matrix assembly. J Clin Invest 99(6):1149–1152

    Article  Google Scholar 

  5. Kelleher CM, McLean SE, Mecham RP (2004) Vascular extracellular matrix and aortic development. Curr Top Dev Biol 62:153–188

    Article  Google Scholar 

  6. Bae H, Puranik AS, Gauvin R et al (2012) Building vascular networks. Sci Transl Med 4(160):160ps23

    Google Scholar 

  7. Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564

    Article  Google Scholar 

  8. Holderfield MT, Hughes CCW (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-β in vascular morphogenesis. Circ Res 102(6):637–652

    Article  Google Scholar 

  9. Sainson RC, Aoto J, Nakatsu MN et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029

    Google Scholar 

  10. Cao L, Arany PR, Wang Y-S et al (2009) Promoting angiogenesis via manipulation of VEGF responsiveness with notch signaling. Biomaterials 30(25):4085–4093

    Article  Google Scholar 

  11. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nat 473(7347):298–307

    Article  Google Scholar 

  12. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478

    Article  Google Scholar 

  13. Gaengel K, Genové G, Armulik A et al (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638

    Article  Google Scholar 

  14. Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102(10):3665–3667

    Article  Google Scholar 

  15. Augustin HG, Koh GY, Thurston G et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177

    Article  Google Scholar 

  16. Bix G, Iozzo RV (2008) Novel interactions of perlecan: unraveling perlecan’s role in angiogenesis. J MRT 71(5):339–348

    Google Scholar 

  17. Hallmann R, Horn N, Selg M et al (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85(3):979–1000

    Article  Google Scholar 

  18. Hayashi K (1992) Endothelial cells interact with the core protein of basement membrane perlecan through beta 1 and beta 3 integrins: an adhesion modulated by glycosaminoglycan. J Cell Biol 119(4):945–959

    Article  Google Scholar 

  19. Davis GE (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Cir Res 97(11):1093–1107

    Article  Google Scholar 

  20. Stratman AN, Davis GE (2011) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(01):68–80

    Article  Google Scholar 

  21. Saunders WB, Bohnsack BL, Faske JB et al (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175(1):179–191

    Article  Google Scholar 

  22. Risau W, Sariola H, Zerwes HG et al (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102(3):471–478

    Google Scholar 

  23. Vittet D, Prandini MH, Berthier R et al (1996) Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88(9):3424–3431

    Google Scholar 

  24. Choi K, Chung YS, Zhang WJ (2005) Hematopoietic and endothelial development of mouse embryonic stem cells in culture. Methods Mol Med 105:359–368

    Google Scholar 

  25. Levenberg S (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci 99(7):4391–4396

    Article  Google Scholar 

  26. Levenberg S (2005) Engineering blood vessels from stem cells: recent advances and applications. Curr Opin Biotechnol 16(5):516–523

    Article  Google Scholar 

  27. Gerecht-Nir S, Dazard J-E, Golan-Mashiach M et al (2005) Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells. Dev Dyn 232(2):487–497

    Article  Google Scholar 

  28. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712

    Article  Google Scholar 

  29. Yamashita J, Itoh H, Hirashima M et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96

    Article  Google Scholar 

  30. Iida M, Heike T, Yoshimoto M et al (2005) Identification of cardiac stem cells with FLK1, CD31, and VE-cadherin expression during embryonic stem cell differentiation. FASEB J 19(3):371–378

    Article  Google Scholar 

  31. Gerecht-Nir S, Ziskind A, Cohen S et al (2003) Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab Invest 83(12):1811–1820

    Article  Google Scholar 

  32. Kaufman DS (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad of Sci 98(19):10716–10721

    Article  Google Scholar 

  33. Asahara T (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–966

    Article  Google Scholar 

  34. Kawamoto A, Gwon H-C, Iwaguro H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for Myocardial Ischemia. Circulation 103(5):634–637

    Article  Google Scholar 

  35. Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436

    Article  Google Scholar 

  36. Stamm C, Westphal B, Kleine H-D et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361(9351):45–46

    Article  Google Scholar 

  37. Ingram DA, Mead LE, Tanaka H et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760

    Article  Google Scholar 

  38. Narazaki G, Uosaki H, Teranishi M et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506

    Article  Google Scholar 

  39. Rufaihah AJ, Huang NF, Jamé S et al (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31(11):e72–79

    Article  Google Scholar 

  40. Rufaihah AJ, Huang NF, Kim J et al (2013) Human induced pluripotent stem cell-derived endothelial cells exhibit functional heterogeneity. Am J Transl Res 5(1):21–35

    Google Scholar 

  41. Volz KS, Miljan E, Khoo A et al (2012) Development of pluripotent stem cells for vascular therapy. Vascul Pharmacol 56(5–6):288–296

    Article  Google Scholar 

  42. Schoen FJ (2011) Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol 22(5):698–705

    Article  Google Scholar 

  43. Pankajakshan D, Agrawal DK (2010) Scaffolds in tissue engineering of blood vessels. Can J Physiol Pharmacol 88(9):855–873

    Article  Google Scholar 

  44. Vismara R, Soncini M, Talò G et al (2010) A bioreactor with compliance monitoring for heart valve grafts. Ann Biomed Eng 38(1):100–108

    Article  Google Scholar 

  45. Rubbens MP, Driessen-Mol A, Boerboom RA et al (2009) Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng 37(7):1263–1272

    Article  Google Scholar 

  46. Balguid A, Mol A, Van Vlimmeren MA et al (2009) Hypoxia induces near-native mechanical properties in engineered heart valve tissue. Circulation 119(2):290–297

    Article  Google Scholar 

  47. Wang L, Wilshaw S-P, Korossis S et al (2009) Factors influencing the oxygen consumption rate of aortic valve interstitial cells: application to tissue engineering. Tissue Eng Part C Methods 15(3):355–363

    Article  Google Scholar 

  48. Robinson PS, Johnson SL, Evans MC et al (2008) Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng Part A 14(1):83–95

    Article  Google Scholar 

  49. Flanagan TC, Sachweh JS, Frese J et al (2009) In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng Part A 15(10):2965–2976

    Article  Google Scholar 

  50. Niklason LE (1999) Functional arteries grown in vitro. Science 284(5413):489–493

    Article  Google Scholar 

  51. Liao J, Joyce EM, Sacks MS (2008) Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29(8):1065–1074

    Article  Google Scholar 

  52. Bayrak A, Tyralla M, Ladhoff J et al (2010) Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 31(14):3793–3803

    Article  Google Scholar 

  53. Honge JL, Funder J, Hansen E et al (2011) Recellularization of aortic valves in pigs. Eur J Cardiothorac Surg 39(6):829–834

    Article  Google Scholar 

  54. Baraki H, Tudorache I, Braun M et al (2009) Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 30(31):6240–6246

    Article  Google Scholar 

  55. Dohmen PM, Lembcke A, Holinski S et al (2007) Midterm clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg 84(3):729–736

    Article  Google Scholar 

  56. Hiemann NE, Mani M, Huebler M et al (2010) Complete destruction of a tissue-engineered porcine xenograft in pulmonary valve position after the Ross procedure. J Thorac Cardiovasc Surg 139(4):e67–68

    Article  Google Scholar 

  57. Shinoka T, Shum-Tim D, Ma PX et al (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115(3):536–546

    Article  Google Scholar 

  58. Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3):185–196

    Article  Google Scholar 

  59. Norotte C, Marga FS, Niklason LE et al (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917

    Article  Google Scholar 

  60. L’heureux N, Pâquet S, Labbé R et al (1998) A completely biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56

    Google Scholar 

  61. L’Heureux N, Dusserre N, Marini A et al (2007) Technology Insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat Clin Pract Cardiovasc Med 4(7):389–395

    Article  Google Scholar 

  62. Saik JE, McHale MK, West JL (2012) Biofunctional materials for directing vascular development. Curr Vasc Pharmacol 10(3):331–341

    Article  Google Scholar 

  63. Hubbell JA (1999) Bioactive biomaterials. Curr Opin Biotechnol 10(2):123–129

    Article  Google Scholar 

  64. Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8(55):153–170

    Article  Google Scholar 

  65. Maynard HD, Hubbell JA (2005) Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater 1(4):451–459

    Article  Google Scholar 

  66. Koch S, Yao C, Grieb G et al (2006) Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med 17(8):735–741

    Article  Google Scholar 

  67. Moon JJ, Lee S-H, West JL (2007) Synthetic biomimetic hydrogels incorporated with Ephrin-A1 for therapeutic angiogenesis. Biomacromolecules 8(1):42–49

    Article  Google Scholar 

  68. Leslie-Barbick JE, Moon JJ, West JL (2009) Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 20(12):1763–1779

    Article  Google Scholar 

  69. Saik JE, Gould DJ, Keswani AH et al (2011) Biomimetic hydrogels with immobilized Ephrin-A1 for therapeutic angiogenesis. Biomacromolecules 12(7):2715–2722

    Article  Google Scholar 

  70. Ikeda Y, Fukuda N, Wada M et al (2004) Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens Res 27(2):119–128

    Article  Google Scholar 

  71. Pratt AB, Weber FE, Schmoekel HG et al (2004) Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 86(1):27–36

    Article  Google Scholar 

  72. Rinsch C, Quinodoz P, Pittet B et al (2001) Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia. Gene Ther 8(7):523–533

    Article  Google Scholar 

  73. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Article  Google Scholar 

  74. Phelps EA, Landázuri N, Thulé PM et al (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci 107(8):3323–3328

    Article  Google Scholar 

  75. Halstenberg S, Panitch A, Rizzi S et al (2002) Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3(4):710–723

    Google Scholar 

  76. Moon JJ, Saik JE, Poché RA et al (2010) Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31(14):3840–3847

    Article  Google Scholar 

  77. Salinas CN, Anseth KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29(15):2370–2377

    Article  Google Scholar 

  78. Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656

    Article  Google Scholar 

  79. Xiao Y, Truskey GA (1996) Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys J 71(5):2869–2884

    Article  Google Scholar 

  80. Wacker BK, Alford SK, Scott EA et al (2008) Endothelial cell migration on RGD-Peptide-containing PEG hydrogels in the presence of Sphingosine 1-Phosphate. Biophys J 94(1):273–285

    Article  Google Scholar 

  81. Papavasiliou G, Sokic S, Turturro M (2012) Synthetic PEG hydrogels as extracellular matrix mimics for tissue engineering applications. In: Biotechnology—molecular studies and novel applications for improved quality of human life, Prof. Sammour R (ed), ISBN: 978-953-51-0151-2, InTech, doi: 10.5772/31695. Available from: http://www.intechopen.com/books/biotechnology-molecular-studies-and-novel-applications-for-improved-quality-of-human-life/synthetic-peg-hydrogels-as-extracellular-matrix-mimics-for-tissue-engineering-applications

  82. Gauvin R, Parenteau-Bareil R, Dokmeci MR et al (2012) Hydrogels and microtechnologies for engineering the cellular microenvironment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(3):235–246

    Article  Google Scholar 

  83. Ghajar CM, Chen X, Harris JW et al (2008) The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys J 94(5):1930–1941

    Article  Google Scholar 

  84. Black AF, Berthod F, L’heureux N et al (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12(13):1331–1340

    Google Scholar 

  85. Hudon V, Berthod F, Black AF et al (2003) A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol 148(6):1094–1104

    Article  Google Scholar 

  86. Tremblay P-L, Hudon V, Berthod F et al (2005) Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5(5):1002–1010

    Article  Google Scholar 

  87. Alajati A, Laib AM, Weber H et al (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5(5):439–445

    Article  Google Scholar 

  88. Sorrell JM, Baber MA, Caplan AI (2009) Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A 15(7):1751–1761

    Article  Google Scholar 

  89. Tsigkou O, Pomerantseva I, Spencer JA et al (2010) Engineered vascularized bone grafts. Proc Natl Acad Sci 107(8):3311–3316

    Article  Google Scholar 

  90. Zheng Y, Chen J, Craven M et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci 109(24):9342–9347

    Article  Google Scholar 

  91. Raghavan S, Nelson CM, Baranski JD et al (2010) Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng Part A 16(7):2255–2263

    Article  Google Scholar 

  92. Sadr N, Zhu M, Osaki T et al (2011) SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 32(30):7479–7490

    Article  Google Scholar 

  93. Miller JS, Stevens KR, Yang MT et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774

    Article  Google Scholar 

  94. Chen X, Aledia AS, Popson SA et al (2010) Rapid anastomosis of endothelial progenitor cell–derived vessels with host vasculature is promoted by a high density of co-transplanted fibroblasts. Tissue Eng Part A 16(2):585–594

    Article  Google Scholar 

  95. Cheng G, Liao S, Wong HK et al (2011) Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood 118(17):4740–4749

    Article  Google Scholar 

  96. Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112(19):3249–3258

    Google Scholar 

  97. Simionescu A, Schulte JB, Fercana G et al (2011) Inflammation in cardiovascular tissue engineering: the challenge to a promise: a minireview. Int J Inflam 2011:1–11

    Article  Google Scholar 

  98. Niklason LE, Langer RS (1997) Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol 5(4):303–306

    Article  Google Scholar 

  99. Patel A, Fine B, Sandig M et al (2006) Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res 71(1):40–49

    Article  Google Scholar 

  100. Singh SK, Desai ND, Petroff SD et al (2008) The impact of diabetic status on coronary artery bypass graft patency: insights from the radial artery patency study. Circulation 118(14 Suppl):S222–225

    Article  Google Scholar 

  101. Franco C, Gerhardt H (2012) Tissue engineering: blood vessels on a chip. Nature 488(7412):465–466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ardalani, H., Assadi, A.H., Murphy, W.L. (2014). Structure, Function, and Development of Blood Vessels: Lessons for Tissue Engineering. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics