Skip to main content

Demand-Driven Automatic Control of Irrigation Channels

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 237 Accesses

Abstract

Large-scale networks of reservoirs and open channels are widely used in agricultural settings for distributing water to irrigators. A demand-driven approach to the automatic control of irrigation channels is described in this entry. The approach involves online measurement of water levels along the channel and distributed feedback control of flow regulation structures to manage the capacity to supply water off-takes under the power of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • 2030 Water Resources Group (2009) Charting our water future. Online: https://www.2030wrg.org/charting-our-water-future/

  • Aström KJ, Murray R (2010) Feedback systems: an introduction for scientists and engineers. Princeton University Press, New Jersey

    Book  Google Scholar 

  • Aughton D, Mareels I, Weyer E (2002a) WIPO Publication Number WO2002016698: CONTROL GATES. US Pat. 7,083,359 issued 1 Aug 2006

    Google Scholar 

  • Aughton D, Mareels I, Weyer E (2002b) WIPO Publication Number WO2002071163: FLUID REGULATION. US Pat. 7,152,001 issued 19 Dec 2006

    Google Scholar 

  • Bos M (1989) Discharge measurement structures, publication 20 International Institute for Land Reclamation and Improvement/ILRI, Wageningen, The Netherlands

    Google Scholar 

  • Cantoni M, Weyer E, Li Y, Ooi SK, Mareels I, Ryan M (2007) Control of large-scale irrigation networks. Proc IEEE 95(1):75–91

    Article  Google Scholar 

  • Cantoni M, Farokhi F, Kerrigan E, Shames I (2017) Structured computation of optimal controls for constrained cascade systems. Int J Control. https://doi.org/10.1080/00207179.2017.1366668

  • Cardno Report no. 3606-64 (2017) Audit of Irrigation Modernization Water Recovery 2016/17 Irrigation Season. Online: https://www.water.vic.gov.au/__data/assets/pdf_file/0022/112954/Audit-of-Irrigation-Modernisation-Water-Recovery-2017-v.2.0-FINAL.pdf

  • Chaudhry M (2007) Open-channel flow. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Choy S, Cantoni M, Dower P, Kearney M (2013) WIPO Publication Number WO2013149304: SUPERVISORY CONTROL OF AUTOMATED IRRIGATION CHANNELS. US Pat. 9,952,601 issued 24 Apr 2018

    Google Scholar 

  • Davis R, Hirji R (2003) Irrigation and drainage development. Water Resources and Environment Technical Report E 1. The Worldbank, Washington, DC. Online: http://documents.worldbank.org/curated/en/2003/03/9291611/

  • Doyle JC, Francis BA, Tannenbaum AR (1992) Feedback control theory. Macmillan, New York

    Google Scholar 

  • Fele F, Maestre JM, Hashemy SM, de la Pena DM, Camacho EF (2014) Coalitional model predictive control of an irrigation canal. J Process Control 24(4):314–325

    Article  Google Scholar 

  • de Halleux J, Prieur C, Coron JM, D’Andrea-Novel B, Bastin G (2003) Boundary feedback control in networks of open channels. Automatica 39(8):1365–1376

    Article  MathSciNet  Google Scholar 

  • Hawke G (2016) Irrigation in Australia: unprecedented investment, innovation and insight – keynote address. In: 2016 irrigation Australia international conference and exhibition, Melbourne. Online: https://www.irrigationaustralia.com.au/documents/item/320

  • Lamaddalena N, Lebdi F, Todorovic M, Bogliotti C (eds) (2004) Proceedings of the 2nd WASAMED (WAter SAving in MEDiterranean agriculture) Workshop (Irrigation Systems Performance). International Centre for Advanced Mediterranean Agronomic Studies. Online: https://www.um.edu.mt/__data/assets/pdf_file/0014/102614/WASAMED_options52.pdf

    Google Scholar 

  • Li Y, Cantoni M, Weyer E (2005) On water-level error propagation in controlled irrigation channels. In: Proceedings of the 44th IEEE conference on decision and control, pp 2101–2106

    Google Scholar 

  • Li Y, Cantoni M (2007) On distributed anti-windup compensation for distributed linear control systems. In: Proceedings of the 46th IEEE conference on decision and control, pp 1106–1111

    Google Scholar 

  • Litrico X, Fromion V (2009) Modeling and control of hydrosystems. Springer Science & Business Media, London

    Book  Google Scholar 

  • Litrico X, Fromion V, Baume J-P, Arranja C, Rijo M (2005) Experimental validation of a methodology to control irrigation canals based on Saint Venant equations. Control Eng Pract 13(11):1425–1437

    Article  Google Scholar 

  • Malaterre PO (1995) Regulation of irrigation canals. Irrig Drain Syst 9(4):297–327

    Article  Google Scholar 

  • Marinaki M, Papageorgiou M (2005) Optimal real-time control of sewer networks. Springer Science & Business Media, London/New York

    MATH  Google Scholar 

  • Mareels I, Weyer E, Ooi SK, Cantoni M, Li Y, Nair G (2005) Systems engineering for irrigation systems: successes and challenges. Annu Rev Control (IFAC) 29(2):169–278

    Article  Google Scholar 

  • Marsden Jacob Associates (2003) Improving water-use efficiency in irrigation conveyance systems A study of investment strategies. Land & Water Australia. ISBN 0642 760 993 – print. Online: http://lwa.gov.au/products/pr030566, http://www.insidecotton.com/jspui/bitstream/1/1756/2/pr030516.pdf

  • Mays LW (ed) (2010) Ancient water technologies. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Nasir HA, Cantoni M, Li Y, Weyer E (2019) Stochastic model predictive control based reference planning for automated open-water channels. IEEE Trans Control Syst Technol. https://doi.org/10.1109/TCST.2019.2952788

  • Negenborn RR, van Overloop PJ, Keviczky T, De Schutter B (2009) Distributed model predictive control of irrigation canals. NHM 4(2):359–380

    MathSciNet  MATH  Google Scholar 

  • Northern Victorian Irrigation Renewal Project (2009). Online: https://www.parliament.vic.gov.au/images/stories/documents/council/SCFPA/water/Transcripts/NVIRP_Presentation.pdf

  • Ooi SK, Krutzen MPM, Weyer E (2005) On physical and data driven modeling of irrigation channels. Control Eng Pract 13(4):461–471

    Article  Google Scholar 

  • Ortloff CR (2009) Water engineering in the ancient world: archaeological and climate perspectives on societies of ancient South America, the middle east, and south-east Asia. Oxford University Press, Oxford, UK

    Google Scholar 

  • van Overloop PJ (2006) Model predictive control on open water systems. Ph.D. Thesis, Delft University of Technology, Delft

    Google Scholar 

  • Playan E, Mateos L (2004) Modernization and optimization of irrigation systems to increase water productivity. In: Proceedings of the 4th international crop science congress. Online: http://www.cropscience.org.au/icsc2004/pdf/143_playane.pdf

  • Puram RK, Sewa Bhawan S (2014) Guidelines for improving water use efficiency in irrigation, domestic & industrial sectors. Ministry of Water Resources, Government of India. Online: http://mowr.gov.in/sites/default/files/Guidelines_for_improving_water_use_efficiency_1.pdf

    Google Scholar 

  • Schultz B, Thatte CD, Labhsetwar VK (2005) Irrigation and drainage: main contributors to global food production. Irrig Drain 54(3):263–278

    Article  Google Scholar 

  • Schuurmans J, Bosgra OH, Brouwer R (1995) Open-channel flow model approximation for controller design. Appl Math Model 91:525–530

    Article  Google Scholar 

  • Schuurmans J, Hof A, Dijkstra S, Bosgra OH, Brouwer R (1999a) Simple water level controller for irrigation and drainage canals. J Irrig Drain Eng 125(4):189–195

    Article  Google Scholar 

  • Schuurmans J, Clemmens AJ, Dijkstra S, Hof A, Brouwer R (1999b) Modeling of irrigation and drainage canals for controller design. J Irrig Drain Eng 125(6):338–344

    Article  Google Scholar 

  • Seiler P, Pant A, Hedrick K (2004) Disturbance propagation in vehicle strings. IEEE Trans Autom Control 49(10):1835–1841

    Article  MathSciNet  Google Scholar 

  • Soltanian L, Cantoni M (2015) Decentralized string-stability analysis for heterogeneous cascades subject to load-matching requirements. Multidim Syst Signal Process 26(4):985–999

    Article  MathSciNet  Google Scholar 

  • UNESCO (2019) The United Nations World Water Development Report 2019: Leaving no one behind – Executive Summary. Technical report, UNESCO. Online: https://unesdoc.unesco.org/ark:/48223/pf0000367303

  • Weyer E (2002) Decentralised PI control of an open water channel. In: Proceedings of the 15th IFAC world congress

    Google Scholar 

  • Weyer E (2001) System identification of an open water channel. Control Eng Pract 9:1289–1299

    Article  Google Scholar 

  • Zaccarian L, Li Y, Weyer E, Cantoni M, Teel AR (2007) Anti-windup for marginally stable plants and its application to open water channel control systems. Control Eng Pract 15(2):261–272

    Article  Google Scholar 

  • Zafar A, Cantoni M, Farokhi F (2019) Optimal control computation for cascade systems by structured Jacobi iterations. IFAC-PapersOnLine 52(20):291–296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Cantoni .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cantoni, M., Mareels, I. (2020). Demand-Driven Automatic Control of Irrigation Channels. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100100-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100100-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics