Skip to main content

Determination of Systemic and Regional Arterial Structure and Function

  • Chapter
  • First Online:
Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases

Abstract

Large artery stiffness can be measured through direct and indirect techniques. Measurement of pulse wave propagation is among the most direct techniques, either through pulse wave velocity or through artificial pressure wave propagation. Measurement of strain and stress through echotracking techniques gives also direct, hypothesis-free measurement of arterial stiffness. Other techniques are derived from models of circulation and can approximate arterial stiffness. Details about techniques, parameter definition, are given here to help researchers and practitioners to make the best choice of technique for their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Learoyd BM, Taylor MG. Alterations with age in the viscoelastic properties of human arterial walls. Circ Res. 1966;18(3):278–92.

    Article  CAS  PubMed  Google Scholar 

  2. Svedlund S, Eklund C, Robertsson P, Lomsky M, Gan LM. Carotid artery longitudinal displacement predicts 1-year cardiovascular outcome in patients with suspected coronary artery disease. Arterioscler Thromb Vasc Biol. 2011;31(7):1668–74.

    Article  CAS  PubMed  Google Scholar 

  3. Humphrey JD, Yin FC. A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys J. 1987;52(4):563–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Masson I, Beaussier H, Boutouyrie P, Laurent S, Humphrey JD, Zidi M. Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans. Biomech Model Mechanobiol. 2011;10(6):867–82.

    Article  PubMed  Google Scholar 

  5. Zulliger MA, Fridez P, Hayashi K, Stergiopulos N. A strain energy function for arteries accounting for wall composition and structure. J Biomech. 2004;37(7):989–1000.

    Article  PubMed  Google Scholar 

  6. Laurent S, Boutouyrie P, Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension. 2005;45(6):1050–5.

    Article  CAS  PubMed  Google Scholar 

  7. Moens AI. Over de voortplantingssnelheid van den pols. S.C. Van Doesburgh, Leiden; 1877.

    Google Scholar 

  8. Korteveg DJ. Uber die Fortpflanzungsgeschwindigkeit des Schalles in Elastischen Rohren. Annu Phys Chem. 1878;5:52–537.

    Google Scholar 

  9. Bramwell LC, Hill AV. Velocity of transmission of the pulse wave. Lancet. 1922;1:891–2.

    Article  Google Scholar 

  10. Couade M, Pernot M, Prada C, et al. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound Med Biol. 2010;36(10):1662–76.

    Article  PubMed  Google Scholar 

  11. Hermeling E, Reesink KD, Reneman RS, Hoeks AP. Confluence of incident and reflected waves interferes with systolic foot detection of the carotid artery distension waveform. J Hypertens. 2008;26(12):2374–80.

    Article  CAS  PubMed  Google Scholar 

  12. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99(18):2434–9.

    Article  CAS  PubMed  Google Scholar 

  13. Shoji T, Emoto M, Shinohara K, et al. Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J Am Soc Nephrol. 2001;12(10):2117–24.

    CAS  PubMed  Google Scholar 

  14. Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37(5):1236–41.

    Article  CAS  PubMed  Google Scholar 

  15. Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation. 2001;103(7):987–92.

    Article  CAS  PubMed  Google Scholar 

  16. Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106(16):2085–90.

    Article  PubMed  Google Scholar 

  17. ben Shlomo Y, Spears M, Boustred C, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  Google Scholar 

  18. Pannier B, Guerin AP, Marchais SJ, Safar ME, London GM. Stiffness of capacitive and conduit arteries: prognostic significance for end-stage renal disease patients. Hypertension. 2005;45(4):592–6.

    Article  CAS  PubMed  Google Scholar 

  19. Reference values for arterial stiffness’ collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur Heart J. 2010;31(19):2338–50.

    Google Scholar 

  20. Wilkinson I, McEniery CM, Schillaci G, et al. ARTERY society guidelines for validation of non(invasive haemodynamic measurement devices: Part 1, Arterial pulse wave velocity. Artery Res. 2010;6:1–6.

    Google Scholar 

  21. Van Bortel LM, Laurent S, Boutouyrie P, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445–8.

    Article  PubMed  Google Scholar 

  22. Sugawara J, Hayashi K, Yokoi T, Tanaka H. Carotid-femoral pulse wave velocity: impact of different arterial path length measurements. Artery Res. 2010;4(1):27–31.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Weber T, Ammer M, Rammer M, et al. Noninvasive determination of carotid-femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement. J Hypertens. 2009;27(8):1624–30.

    Article  CAS  PubMed  Google Scholar 

  24. Girerd N, Legedz L, Paget V, et al. Outcome associations of carotid-femoral pulse wave velocity vary with different measurement methods. Am J Hypertens. 2012;25(12):1264–70.

    PubMed  Google Scholar 

  25. Laurent S, Mousseaux E, Boutouyrie P. Arterial stiffness as an imaging biomarker: are all pathways equal? Hypertension. 2013;62(1):10–2.

    Article  CAS  PubMed  Google Scholar 

  26. Sugawara J, Hayashi K, Yokoi T, et al. Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens. 2005;19(5):401–6.

    Article  CAS  PubMed  Google Scholar 

  27. Matsuoka O, Otsuka K, Murakami S, et al. Arterial stiffness independently predicts cardiovascular events in an elderly community – Longitudinal Investigation for the Longevity and Aging in Hokkaido County (LILAC) study. Biomed Pharmacother. 2005;59 Suppl 1:S40–4.

    PubMed Central  PubMed  Google Scholar 

  28. Boutouyrie P, Laurent S, Benetos A, Girerd XJ, Hoeks AP, Safar ME. Opposing effects of ageing on distal and proximal large arteries in hypertensives. J Hypertens Suppl. 1992;10(6):S87–91.

    CAS  PubMed  Google Scholar 

  29. Laurent S, Girerd X, Mourad JJ, et al. Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension. Arterioscler Thromb. 1994;14(7):1223–31.

    Article  CAS  PubMed  Google Scholar 

  30. Gosse P, Guillo P, Ascher G, Clementy J. Assessment of arterial distensibility by monitoring the timing of Korotkoff sounds. Am J Hypertens. 1994;7(3):228–33.

    Article  CAS  PubMed  Google Scholar 

  31. Gosse P, Cremer A, Papaioannou G, Yeim S. Arterial stiffness from monitoring of timing of Korotkoff sounds predicts the occurrence of cardiovascular events independently of left ventricular mass in hypertensive patients. Hypertension. 2013;62(1):161–7.

    Article  CAS  PubMed  Google Scholar 

  32. Dogui A, Redheuil A, Lefort M, et al. Measurement of aortic arch pulse wave velocity in cardiovascular MR: comparison of transit time estimators and description of a new approach. J Magn Reson Imaging. 2011;33(6):1321–9.

    Article  PubMed  Google Scholar 

  33. Hoeks AP, Brands PJ, Smeets FA, Reneman RS. Assessment of the distensibility of superficial arteries. Ultrasound Med Biol. 1990;16(2):121–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kawasaki T, Sasayama S, Yagi S, Asakawa T, Hirai T. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc Res. 1987;21(9):678–87.

    Article  CAS  PubMed  Google Scholar 

  35. Hirai T, Sasayama S, Kawasaki T, Yagi S. Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation. 1989;80(1):78–86.

    Article  CAS  PubMed  Google Scholar 

  36. Benetos A, Laurent S, Hoeks AP, Boutouyrie PH, Safar ME. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler Thromb. 1993;13(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  37. Meinders JM, Brands PJ, Willigers JM, Kornet L, Hoeks AP. Assessment of the spatial homogeneity of artery dimension parameters with high frame rate 2-D B-mode. Ultrasound Med Biol. 2001;27(6):785–94.

    Article  CAS  PubMed  Google Scholar 

  38. Redheuil A, Yu WC, Wu CO, et al. Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension. 2010;55(2):319–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Giannattasio C, Cesana F, Maestroni S, et al. Comparison of echotracking and magnetic resonance assessment of abdominal aorta distensibility and relationships with pulse wave velocity. Ultrasound Med Biol. 2011;37(12):1970–6.

    Article  PubMed  Google Scholar 

  40. Redheuil A, Yu WC, Mousseaux E, et al. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol. 2011;58(12):1262–70.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Harada A, Okada T, Niki K, Chang D, Sugawara M. On-line noninvasive one-point measurements of pulse wave velocity. Heart Vessels. 2002;17(2):61–8.

    Article  PubMed  Google Scholar 

  42. Beaussier H, Naggara O, Calvet D, et al. Mechanical and structural characteristics of carotid plaques by combined analysis with echotracking system and MR imaging. JACC Cardiovasc Imaging. 2011;4(5):468–77.

    Article  PubMed  Google Scholar 

  43. Bianchini E, Bozec E, Gemignani V, et al. Assessment of carotid stiffness and intima-media thickness from ultrasound data: comparison between two methods. J Ultrasound Med. 2010;29(8):1169–75.

    PubMed  Google Scholar 

  44. Karamanoglu M, O'Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur Heart J. 1993;14(2):160–7.

    Article  CAS  PubMed  Google Scholar 

  45. Verbeke F, Segers P, Heireman S, Vanholder R, Verdonck P, Van Bortel LM. Noninvasive assessment of local pulse pressure: importance of brachial-to-radial pressure amplification. Hypertension. 2005;46(1):244–8.

    Article  CAS  PubMed  Google Scholar 

  46. Segers P, Mahieu D, Kips J, et al. Amplification of the pressure pulse in the upper limb in healthy, middle-aged men and women. Hypertension. 2009;54(2):414–20.

    Article  CAS  PubMed  Google Scholar 

  47. Soender TK, Van Bortel LM, Moller JE, Lambrechtsen J, Hangaard J, Egstrup K. Impact of calibration on estimates of central blood pressures. J Hum Hypertens. 2012;26(12):706–10.

    Article  CAS  PubMed  Google Scholar 

  48. Boutouyrie P, Bezie Y, Lacolley P, et al. In vivo/in vitro comparison of rat abdominal aorta wall viscosity. Influence of endothelial function. Arterioscler Thromb Vasc Biol. 1997;17(7):1346–55.

    Article  CAS  PubMed  Google Scholar 

  49. Lacolley P, Challande P, Boumaza S, et al. Mechanical properties and structure of carotid arteries in mice lacking desmin. Cardiovasc Res. 2001;51(1):178–87.

    Article  CAS  PubMed  Google Scholar 

  50. Rosset E, Brunet C, Rieu R, et al. Viscoelastic properties of human arteries. Methodology and preliminary results. Surg Radiol Anat. 1996;18(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  51. Giannattasio C, Salvi P, Valbusa F, et al. Simultaneous measurement of beat-to-beat carotid diameter and pressure changes to assess arterial mechanical properties. Hypertension. 2008;52(5):896–902.

    Article  CAS  PubMed  Google Scholar 

  52. Langewouters GJ, Wesseling KH, Goedhard WJ. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech. 1984;17(6):425–35.

    Article  CAS  PubMed  Google Scholar 

  53. Tardy Y, Meister JJ, Perret F, Brunner HR, Arditi M. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements. Clin Phys Physiol Meas. 1991;12(1):39–54.

    Article  CAS  PubMed  Google Scholar 

  54. Bussy C, Boutouyrie P, Lacolley P, Challande P, Laurent S. Intrinsic stiffness of the carotid arterial wall material in essential hypertensives. Hypertension. 2000;35(5):1049–54.

    Article  CAS  PubMed  Google Scholar 

  55. Lacolley P, Glaser E, Challande P, et al. Structural changes and in situ aortic pressure-diameter relationship in long-term chemical-sympathectomized rats. Am J Physiol. 1995;269(2 Pt 2):H407–16.

    CAS  PubMed  Google Scholar 

  56. Bezie Y, Lacolley P, Laurent S, Gabella G. Connection of smooth muscle cells to elastic lamellae in aorta of spontaneously hypertensive rats. Hypertension. 1998;32(1):166–9.

    Article  CAS  PubMed  Google Scholar 

  57. Galmiche G, Labat C, Mericskay M, et al. Inactivation of serum response factor contributes to decrease vascular muscular tone and arterial stiffness in mice. Circ Res. 2013;112(7):1035–45.

    Article  CAS  PubMed  Google Scholar 

  58. Fung YC. What are the residual stresses doing in our blood vessels? Ann Biomed Eng. 1991;19(3):237–49.

    Article  CAS  PubMed  Google Scholar 

  59. Glaser E, Lacolley P, Boutouyrie P, et al. Dynamic versus static compliance of the carotid artery in living Wistar-Kyoto rats. J Vasc Res. 1995;32(4):254–65.

    Article  CAS  PubMed  Google Scholar 

  60. Wilson JS, Baek S, Humphrey JD. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J R Soc Interface. 2012;9(74):2047–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Van Bortel LM, Balkestein EJ, van der Heijden-Spek JJ, et al. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. J Hypertens. 2001;19(6):1037–44.

    Article  PubMed  Google Scholar 

  62. Hermeling E, Vermeersch SJ, Rietzschel ER, et al. The change in arterial stiffness over the cardiac cycle rather than diastolic stiffness is independently associated with left ventricular mass index in healthy middle-aged individuals. J Hypertens. 2012;30(2):396–402.

    Article  CAS  PubMed  Google Scholar 

  63. Sandrin L, Catheline S, Tanter M, Hennequin X, Fink M. Time-resolved pulsed elastography with ultrafast ultrasonic imaging. Ultrason Imaging. 1999;21(4):259–72.

    Article  CAS  PubMed  Google Scholar 

  64. Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries: theoretical, experimental and clinical principles. 5th ed. London: Hodder Arnold; 2005.

    Google Scholar 

  65. London GM, Cohn JN. Prognostic application of arterial stiffness: task forces. Am J Hypertens. 2002;15(8):754–8.

    Article  PubMed  Google Scholar 

  66. Duprez DA, Jacobs Jr DR, Lutsey PL, et al. Association of small artery elasticity with incident cardiovascular disease in older adults: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2011;174(5):528–36.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Wassertheurer S, Mayer C, Breitenecker F. Modeling arterial and left ventricular coupling for non-invasive measurements. Simul Model Pract Theory. 2008;16(8):988–97.

    Article  Google Scholar 

  68. Hametner B, Wassertheurer S, Kropf J, Mayer C, Eber B, Weber T. Oscillometric estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements. Blood Press Monit. 2013;18(3):173–6.

    Article  PubMed  Google Scholar 

  69. Baulmann J, Schillings U, Rickert S, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26(3):523–8.

    Article  CAS  PubMed  Google Scholar 

  70. Jatoi NA, Mahmud A, Bennett K, Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J Hypertens. 2009;27:2186–91.

    Article  CAS  PubMed  Google Scholar 

  71. Nemcsik J, Egresits J, El Hadj OT, et al. Validation of arteriograph – a new oscillometric device to measure arterial stiffness in patients on maintenance hemodialysis. Kidney Blood Press Res. 2009;32(3):223–9.

    Article  PubMed  Google Scholar 

  72. Rezai MR, Cowan BR, Sherratt N, Finn JD, Wu FC, Cruickshank JK. A magnetic resonance perspective of the pulse wave transit time by the Arteriograph device and potential for improving aortic length estimation for central pulse wave velocity. Blood Press Monit. 2013;18(2):111–18.

    Article  PubMed  Google Scholar 

  73. Horvath IG, Nemeth A, Lenkey Z, et al. Invasive validation of a new oscillometric device (Arteriograph) for measuring augmentation index, central blood pressure and aortic pulse wave velocity. J Hypertens. 2010;28(10):2068–75.

    Article  CAS  PubMed  Google Scholar 

  74. Nichols WW, O’Rourke MF. McDonald’s blood flow in arteries. 3rd ed. London: Edward Arnold; 1990.

    Google Scholar 

  75. Mitchell GF. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol. 2008;105(5):1652–60.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Adiyaman A, Dechering DG, Boggia J, et al. Determinants of the ambulatory arterial stiffness index in 7604 subjects from 6 populations. Hypertension. 2008;52(6):1038–44.

    Article  CAS  PubMed  Google Scholar 

  77. Segers P, Kips JG, Vermeersch SJ, Boutouyrie P, Laurent S, Van Bortel LM. A model expression for the ambulatory arterial stiffness index. J Hypertens. 2013;31(1):211–12.

    Article  CAS  PubMed  Google Scholar 

  78. Schillaci G, Parati G, Pirro M, et al. Ambulatory arterial stiffness index is not a specific marker of reduced arterial compliance. Hypertension. 2007;49(5):986–91.

    Article  CAS  PubMed  Google Scholar 

  79. Schillaci G, Bilo G, Pucci G, et al. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension. 2012;60(2):369–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Boutouyrie MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Boutouyrie, P., Macron, L., Mousseaux, E., Laurent, S. (2014). Determination of Systemic and Regional Arterial Structure and Function. In: Safar, M., O'Rourke, M., Frohlich, E. (eds) Blood Pressure and Arterial Wall Mechanics in Cardiovascular Diseases. Springer, London. https://doi.org/10.1007/978-1-4471-5198-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5198-2_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5197-5

  • Online ISBN: 978-1-4471-5198-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics