Skip to main content

Abstract

In this chapter, we consider the class of CT-LTV systems with finite state jumps, which are linear continuous-time systems whose states undergo finite jump discontinuities at discrete instants of time. Such systems, namely Impulsive Dynamical Linear Systems (IDLSs) (Haddad et al., Impulsive and Hybrid Dynamical Systems, Princeton University Press, Princeton, 2006), can be regarded as a special class of hybrid systems, and they can be either time-dependent (TD-IDLSs) if the state jumps are time-driven or state-dependent (SD-IDLSs) if the state jumps occur when the trajectory reaches an assigned subset of the state space, the so-called resetting set. TD-IDLSs can also be seen as a special case of switching linear systems (Liberzon, Switching in Systems and Control, Springer, Berlin, 2003). Lyapunov stability and stabilization of hybrid systems have been thoroughly discussed in the literature (see, for instance, the monographs Liberzon, Switching in Systems and Control, Springer, Berlin, 2003; Haddad et al., Impulsive and Hybrid Dynamical Systems, Princeton University Press, Princeton, 2006; Pettersson, Analysis and Design of Hybrid Systems. Ph.D. Thesis, 1999, and references therein). In this chapter, we propose some necessary and sufficient conditions for the FTS of TD-IDLSs, while only a sufficient condition will be provided for SD-IDLSs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    r is the number of resetting times in [t 0,t 0+T], i.e., is the cardinality of \(\mathcal{T}\).

  2. 2.

    The Chebyshev center of a set \({\mathcal{D}} \subseteq \mathbb{R}^{n}\) is defined as \(0_{\mathcal{D}}~:=~\arg\min_{x \in \mathbb{R}^{n}} ( \max_{\theta\in\mathcal{S}} \| x- \theta\| _{\infty})\).

References

  1. Amato, F., Ambrosino, R., Ariola, M., Cosentino, C.: Finite-time stability of linear time-varying systems with jumps. Automatica 45(5), 1354–1358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amato, F., Ambrosino, R., Ariola, M., De Tommasi, G.: Robust finite-time stability of impulsive dynamical linear systems subject to norm-bounded uncertainties. Int. J. Robust Nonlinear Control 21(10), 1080–1092 (2011)

    Article  MATH  Google Scholar 

  3. Amato, F., Carannante, G., De Tommasi, G.: Finite-time stabilization of switching linear systems with uncertain resetting times. In: Proc. Mediterranean Control Conference, Corfu, Greece, pp. 1361–1366 (2011)

    Google Scholar 

  4. Amato, F., De Tommasi, G., Pironti, A.: Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems. Automatica 49, 2546–2550 (2013)

    Article  Google Scholar 

  5. Ambrosino, R., Calabrese, F., Cosentino, C., De Tommasi, G.: Sufficient conditions for finite-time stability of impulsive dynamical systems. IEEE Trans. Autom. Control 54(4), 861–865 (2009)

    Article  Google Scholar 

  6. Boel, R., Stremersch, G.: Hybrid Systems II. Springer, Berlin (1995)

    Google Scholar 

  7. Boel, R., Stremersch, G.: Discrete Event Systems: Analysis and Control. Springer, Berlin (2000)

    Book  Google Scholar 

  8. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  9. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. The Mathworks, Natick (1995)

    Google Scholar 

  10. Haddad, W.M., Chellaboina, V., Nersesov, S.G.: Impulsive and Hybrid Dynamical Systems. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  11. Jakubovič, V.A.: The S-procedure in linear control theory. Vestn. Leningr. Univ., Math. 4, 73–93 (1977)

    Google Scholar 

  12. Johansson, K.H., Egerstedt, M., Lygeros, J., Sastry, S.S.: On the regularization of Zeno hybrid automata. Syst. Control Lett. 38, 141–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liberzon, D.: Impulsive Control Theory. Springer, Berlin (2001)

    Google Scholar 

  14. Liberzon, D.: Switching in Systems and Control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  15. Liu, L., Sun, J.: Finite-time stabilization of linear systems via impulsive control. Int. J. Control 81, 905–909 (2008)

    Article  MATH  Google Scholar 

  16. Lofberg, J.: YALMIP: a toolbox for modeling and optimization in Matlab. In: Proc. IEEE Symposium on Computer-Aided Control System Design, Taipei, Taiwan, pp. 284–289 (2004)

    Google Scholar 

  17. Pettersson, S.: Analysis and Design of Hybrid Systems. Ph.D. Thesis, Chalmers University of Technology (1999)

    Google Scholar 

  18. Sun, J., Xu, J., Yue, D.: Stochastic finite-time stability of nonlinear Markovian switching systems with impulsive effects. J. Dyn. Syst. Meas. Control 134, 011011 (2011). doi:10.1115/1.4005359

    Google Scholar 

  19. Wang, Y., Shi, X., Wang, G., Zuo, Z.: Finite-time stability for continuous-time switched systems in the presence of impulse effects. IET Control Theory Appl. 6, 1741–1744 (2012)

    Article  MathSciNet  Google Scholar 

  20. Wang, Y., Wang, G., Shi, X., Zuo, Z.: Finite-time stability analysis of impulsive switched discrete-time linear systems: the average dwell time approach. Circuits Syst. Signal Process. 31, 1877–1886 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, Y., Shi, X., Zuo, Z., Chen, M.Z.Q., Shao, Y.: On finite-time stability for nonlinear impulsive switched systems. Nonlinear Anal., Real World Appl. 14, 807–814 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, J., Sun, J.: Finite-time stability of linear time-varying singular impulsive systems. IET Control Theory Appl. 4, 2239–2244 (2010)

    Article  MathSciNet  Google Scholar 

  23. Xu, J., Sun, J.: Finite-time stability of nonlinear switched impulsive systems. Int. J. Syst. Sci. 44, 889–895 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Amato, F., Ambrosino, R., Ariola, M., Cosentino, C., De Tommasi, G. (2014). FTS of IDLSs. In: Finite-Time Stability and Control. Lecture Notes in Control and Information Sciences, vol 453. Springer, London. https://doi.org/10.1007/978-1-4471-5664-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5664-2_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5663-5

  • Online ISBN: 978-1-4471-5664-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics