Skip to main content

Kinetic Modelling of Droplet Heating and Evaporation

  • Chapter
  • First Online:
Book cover Droplets and Sprays
  • 2698 Accesses

Abstract

The validity of the assumption used in the previous chapters that both liquid and gas phases can be treated as a continuum is no longer obvious when the interface between liquid droplets and the ambient gas is modelled, even when the gas pressure is well above one atmosphere. The chapter begins with a review of early kinetic models of droplet evaporation. Then more rigorous models, based on numerical solutions to Boltzmann equations for vapour and air, are discussed. Two regions of gas above the surface of an evaporating droplet are considered: the kinetic and hydrodynamic regions. Vapour and air dynamics in the first region are described by the Boltzmann equations, while the conventional hydrodynamic analysis is applied in the second region. Collisions between molecules are assumed to be inelastic in the general case. The evaporation coefficient is estimated based on molecular dynamics analysis of n-dodecane molecules, using the united atoms model (bonding between hydrogen and carbon molecules is assumed to be much stronger than bonding between carbon molecules).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramov, A. A., Kogan, M. N., & Makashev, N. K. (1981). Numerical analysis of the processes in strongly non-equilibrium Knudsen layers. Reports of the Academy of Sciences of USSR. Mechanics of Liquids and Gases No. 3, pp. 72–81 (in Russian).

    Google Scholar 

  2. Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G., & Stepanov, K. N. (1975). Plasma electrodynamics. Oxford: Pergamon.

    Google Scholar 

  3. Alexandrov, A. F., Bogdankevich, L. S., & Rukhadze, A. A. (1978). Fundamentals of plasma electrodynamics. Moscow: Vysshaya Shkola (in Russian).

    Google Scholar 

  4. Allen, M. P., & Tidesley, D. J. (1984). Computer simulation of liquids. Oxford: Oxford University Press.

    Google Scholar 

  5. Amat, M. A., & Rutledge, G. C. (2010). Liquid-vapor equilibria and interfacial properties of n-alkanes and perfluoroalkanes by molecular simulation. Journal of Chemical Physics, 132.11, 114704. doi:10.1063/1.3356219.

  6. Anisimov, S. I. (1968). Evaporation of metals under the influence of laser radiation. Journal of Experimental and Theoretical Physics, 54, 339–342 (in Russian).

    Google Scholar 

  7. Anisimov, S. I., Imas, Ya. A., Romanov, G. S., & Khodyko, Yu. V. (1970). Effect of high intensity radiation on metals. Moscow: Nauka Publishing House (in Russian).

    Google Scholar 

  8. Anisimov, S. I., Dunikov, D. O., Zhakhovskii, V. V., & Malyshenko, S. P. (1999). Properties of a liquid-gas interface at high-rate evaporation. Journal of Chemical Physics, 110, 8722–8729.

    Google Scholar 

  9. Aoki, K., Takata, S., & Kosuge, S. (1998). Vapor flows caused by evaporation and condensation on two parallel plane surfaces: effect of the presence of a noncondensable gas. Physics of Fluids, 10, 1519–1533.

    Google Scholar 

  10. Aoki, K., Bardos, C., & Takata, S. (2003). Knudsen layer for gas mixtures. Journal of Statistical Physics, 112, 629–655.

    MATH  MathSciNet  Google Scholar 

  11. Aristov, V. V., & Tcheremissine, F. G. (1992). Direct numerical solution of the Boltzmann equation. Moscow: Computer Centre of Russian Academy of Sciences.

    MATH  Google Scholar 

  12. Bakhvalov, N. S., Zhidkov, N. P., & Kobelkov, G. M. (1989). Numerical methods. Moscow: Nauka Publishing House (in Russian).

    Google Scholar 

  13. Banasiak, J., & Groppi, M. (2003). Solvability of linear kinetic equations with multi-energetic inelastic scattering. Reports on Mathematical Physics, 52, 235–253.

    MATH  MathSciNet  Google Scholar 

  14. Benedetto, D., & Caglioti, E. (1999). The collapse phenomenon in one-dimensional inelastic point particle systems. Physica D: Nonlinear Phenomena, 132, 457–475.

    MATH  MathSciNet  Google Scholar 

  15. Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potential. Journal of Physics and Chemistry, 91, 6269–6271.

    Google Scholar 

  16. Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954). A model for collision processes in gases. 1. Small amplitude processes in charged and neutral one component systems. Physical Review, 94, 511–525.

    MATH  Google Scholar 

  17. Biben, T., Martin, Ph. A., & Piasecki, J. (2002). Stationary state of thermostated inelastic hard spheres. Physica A: Statistical Mechanics and its Applications, 310, 308–324.

    Google Scholar 

  18. Bird, G. A. (1976). Molecular gas dynamics. Oxford: Oxford University Press.

    Google Scholar 

  19. Bird, G. A. (1994). Molecular gas dynamics and the direct simulation of gas flows. Oxford: Oxford University Press.

    Google Scholar 

  20. Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2002). Transport phenomena. Chichester: John Wiley & Sons.

    Google Scholar 

  21. Borgnakke, C., & Larsen, P. S. (1975). Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. Journal of Computational Physics, 18, 405–420.

    Google Scholar 

  22. Buet, C., Cordier, S., & Degond, P. (1998). Regularized Boltzmann operators. Computers and Mathematics with Applications, 35, 55–74.

    MATH  MathSciNet  Google Scholar 

  23. Cao, B.-Y., Xie, J.-F., & Sazhin, S. S. (2011). Molecular dynamics study on evaporation and condensation of n-dodecane at liquid-vapour phase equilibria. Journal of Chemical Physics, 134, 164309–164309-9. doi:10.1063/1.3579457.

  24. Carravetta, V., & Clementi, E. (2011) (1984). Water-water interaction potential: an approximation of the electron correlation contribution by a functional of the SCF density matrix. Journal of Chemical Physics, 81, 2646–2651. doi:10.1063/1.447973.

  25. Chapman, S., & Cowling, T. G. (1990). The mathematical theory on non-uniform gases. Cambridge: Cambridge University Press.

    Google Scholar 

  26. Cercignani, C. (1981). Strong evaporation of a polyatomic gas. In S. S. Fisher (Ed.), Rarefied gas dynamics, part 1 (pp. 305–310). New York: AIAA.

    Google Scholar 

  27. Chernyak, V. (1995). The kinetic theory of droplet evaporation. Journal of Aerosol Science, 26, 873–885.

    Google Scholar 

  28. Chilukoti, H. K., Kikugawa, G., & Ohara, T. (2013). A molecular dynamics study on transport properties and structure at the liquid-vapor interfaces of alkanes. International Journal of Heat and Mass Transfer, 59, 144–154.

    Google Scholar 

  29. Cipola, J. W., Lang, J. H., & Loyalka, S. K. (1974). Kinetic theory of evaporation and condensation. Proceedings of the 8th International Symposium on Rarefied Gas Dynamics (pp. 1773–1776). New York-London: Academic Press.

    Google Scholar 

  30. Consoline, L., Aggarwal, S. K., & Murad, S. (2003). A molecular dynamics simulation of droplet evaporation. International Journal of Heat and Mass Transfer, 43, 3179–3188.

    Google Scholar 

  31. Cramer, C. J., & Truhlar, D. G. (1999). Implicit solvation models: equilibria, structure, spectra, and dynamics. Chemical Physics, 99, 2161–2200.

    Google Scholar 

  32. Doi, T. (2011). Numerical analysis of the time-dependent energy and momentum transfers in a rarefied gas between two parallel planes based on the linearized Boltzmann equation. ASME Journal of Heat Transfer, 133, 022404.

    Google Scholar 

  33. Dombrovsky, L. A., & Sazhin, S. S. (2003). A parabolic temperature profile model for heating of droplets. ASME Journal of Heat Transfer, 125, 535–537.

    Google Scholar 

  34. Dombrovsky, L. A., Sazhin, S. S., Sazhina, E. M., Feng, G., Heikal, M. R., Bardsley, M. E. A., et al. (2001). Heating and evaporation of semi-transparent diesel fuel droplets in the presence of thermal radiation. Fuel, 80, 1535–1544.

    Google Scholar 

  35. Dongari, N., & Agrawal, A. (2012). Modeling of Navier-Stokes equations for high Knudsen number gas flows. International Journal of Heat and Mass Transfer, 55, 4352–4358.

    Google Scholar 

  36. Lu, G., Duan, Y.-Y., Wang, X.-D., & Lee, D.-J. (2012). Internal flow in evaporating droplet on heated solid surface. International Journal of Heat and Mass Transfer, 54, 4437–4447.

    Google Scholar 

  37. Dunikov, D. O., Malyshenko, S. P., & Zhakhovskii, V. V. (2000). Liquid-gas interface during transient condensation: molecular dynamics investigation. In A. Leontiev & A. Klimenko, (Eds.), Proceedings of 3rd Russian National Heat and Mass Transfer Conference (Vol. 4, pp. 257–260). Moscow: Moscow Power Engineering Institute Publishing House (in Russian).

    Google Scholar 

  38. Dunikov, D. O., Malyshenko, S. P., & Zhakhovskii, V. V. (2001). Corresponding states law and molecular-dynamics simulations of the Lennard-Jones fluid. Journal of Chemical Physics, 115, 6623–6631.

    Google Scholar 

  39. Elliott, R. J. (1995) Plasma kinetic theory. In R. Rendy (Ed.), Plasma physics: an introductory course (pp. 29–53). Cambridge: Cambridge University Press.

    Google Scholar 

  40. Elperin, T., & Krasovitov, B. (1995). Radiation, thermal diffusion and kinetic effects in evaporation and combustion of large and moderate size droplets. International Journal of Heat and Mass Transfer, 38, 409–418.

    MATH  Google Scholar 

  41. Feng, Z.-G., & Michaelides, E. E. (2012). Heat transfer from a nano-sphere with temperature and velocity discontinuities at the interface. International Journal of Heat and Mass Transfer, 55, 6491–6498.

    Google Scholar 

  42. Ferrari, L., & Carbognani, A. (1998). Differential kinetic equations for a Rayleigh gas with inelastic collisions. Physica A: Statistical Mechanics and its Applications, 251, 452–468.

    Google Scholar 

  43. Flynn, P. F., Durrett, R. P., Hunter, G. L., zur Loye, A. O., Akinyemi, O. C., Dec, J. E. et al. (1999). Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation. SAE report 1999–01-0509.

    Google Scholar 

  44. Fournier, N., & Mischler, S. (2005). A spatially homogeneous Boltzmann equation for elastic, inelastic and coalescing collisions. Journal de mathématiques pures et appliquées, 84, 1173–1234.

    MATH  MathSciNet  Google Scholar 

  45. Frezzotti, A. (1986). Kinetic theory study of the strong evaporation of a binary mixture. In V. Boffi & C. Cercignani (Eds.), Rarefied gas dynamics (Vol. 2, pp. 313–322). Stutgart: Teubner.

    Google Scholar 

  46. Fuchs, N. A. (1959). Evaporation and droplet growth in gaseous media. London: Pergamon Press.

    Google Scholar 

  47. Fujikawa, S., & Maerefat, M. (1990). A study of the molecular mechanism of vapor condensation. JSME International Journal Series II, 33, 634.

    Google Scholar 

  48. Furioli, G., Pulvirenti, A., Terraneo, E., & Toscani, G. (2010). Convergence to self-similarity for the Boltzmann equation for strongly inelastic Maxwell molecules. Annales de l’Institut Henri Poincaré AN, 27, 719–737.

    MATH  MathSciNet  Google Scholar 

  49. Gladstone, G., Laidler, K. J., & Eyring, H. (1941). The theory of rate processes. New York: McGraw-Hill.

    Google Scholar 

  50. Gombosi, T. I. (1994). Gaskinetic theory. Cambridge: Cambridge University Press.

    Google Scholar 

  51. Gumerov, N. A. (2000). Dynamics of vapour bubbles with non-equilibrium phase transitions in isotropic acoustic fields. Physics of Fluids, 12, 71–88.

    MATH  Google Scholar 

  52. Gun’ko, V. M., Nasiri, R., Sazhin, S. S., Lemoine, F., & Grisch, F. (2013). A quantum chemical study of the processes during the evaporation of real-life Diesel fuel droplets. Fluid Phase Equilibria, 356, 146–156.

    Google Scholar 

  53. Gun’ko, V. M., Nasiri, R., & Sazhin, S. S. (2014). A study of the evaporation and condensation of n-alkane clusters and nanodroplets using quantum chemical methods. Fluid Phase Equilibria, 366, 99–107.

    Google Scholar 

  54. Gun’ko, V. M., & Turov, V. V. (1999). Structure of hydrogen bonds and \(^{1}\)H NMR spectra of water at the interface of Oxides. Langmuir, 15, 6405–6415.

    Google Scholar 

  55. Gun’ko, V. M., Zarko, V. I., Leboda, R., Marciniak, M., Janusz, W., & Chibowski, S. (2000). Highly dispersed X/SiO\(_{2}\) and C/X Si O\(_{2}\) (X = Aluminia, Titania, Aluminia/Titania) in the gas liquid media. Journal of Colloid and Interface Science, 230, 396–409.

    Google Scholar 

  56. Hanchak, M. S., Briones, A. M., Ervin, J. S., & Byrd, L. W. (2013). One-dimensional models of nanoliter droplet evaporation from a hot surface in the transition regime. International Journal of Heat and Mass Transfer, 57, 473–483.

    Google Scholar 

  57. Harris, J. G. (1992). Liquid-vapor interfaces of alkane oligomers: structure and thermodynamics from molecular dynamics simulations of chemically realistic models. Journal of Physics and Chemistry, 96, 5077–5086.

    Google Scholar 

  58. Harvie, D. J. E., & Fletcher, D. F. (2001). A simple kinetic theory treatment of volatile liquid-gas interfaces. ASME Journal of Heat Transfer, 123, 486–491.

    Google Scholar 

  59. Hertz, H. (1882). Über die Verdunstung der Flüssigkeiten, inbesondere des Quecksilbers, im lufteeren Raume. Annalen der Physik und Chemie, 17, 177–200.

    Google Scholar 

  60. Hirschfelder, J. O., Curtiss, C. F., & Bird, R. B. (1967). Molecular theory of gases and liquids (4th ed.). New York: John Wiley & Sons.

    Google Scholar 

  61. Hirth, J. P., & Pound, G. M. (1963). Condensation and evaporation: nucleation and growth kinetics. Oxford-London-Paris-Frankfurt: Pergamon Press.

    Google Scholar 

  62. Ibergay, C., Ghoufi, A., Goujon, F., Ungerer, P., Boutin A., Rousseau, B. et al. (2007). Molecular simulations of the \(n-\)alkane liquid-vapor interface: interfacial properties and their long range corrections. Physical Review E, 75, 051602 (18 pages).

    Google Scholar 

  63. Imamuro, T., & Sturtevant, B. (1990). Numerical study of discrete-velocity gases. Physics of Fluids, 2, 2196–2203.

    Google Scholar 

  64. Ishiyama, T., Yano, T., & Fujikawa, S. (2004). Molecular dynamics study of kinetic boundary conditions at an interface between argon vapor and its condensed phase. Physics of Fluids, 16(8), 2899–2907. doi:10.1063/1.1763936.

    Google Scholar 

  65. Ishiyama, T., Yano, T., & Fujikawa, S. (2004). Molecular dynamics study of kinetic boundary conditions at an interface between a polyatomic vapor and its condensed phase. Physics of Fluids, 16(12) 4713–4726. doi:10.1063/1.1811674.

  66. Ishiyama, T., Fujikawa, S., Kurz, W., & Lauterborn, W. (2013). Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon. Physical Review E, 88, 042406.

    Google Scholar 

  67. Jasper, A. W., & Miller, J. A. (2014). Lennard-Jones parameters for combustion and chemical kinetics modeling from full-dimensional intermolecular potentials. Combustion and Flame, 161, 101–110.

    Google Scholar 

  68. Jorgensen, W. L., Madura, J. D., & Swenson, C. J. (1984). Optimized intermolecular potential functions for liquid hydrocarbons. Journal of the American Chemical Society, 106, 6638–6646.

    Google Scholar 

  69. Jorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110, 1657–1666.

    Google Scholar 

  70. Kennaird, E. H. (1938). Kinetic theory of gases. New York: McGraw-Hill.

    Google Scholar 

  71. Kharchenko, V., Balakrishnan, N., & Dalgarno, A. (1998). Thermalization of fast nitrogen atoms in elastic and inelastic collisions with molecules of atmospheric gases. Journal of Atmospheric and Solar-Terrestrial Physics, 60, 95–106.

    Google Scholar 

  72. Knight, S. J. (1979). Theoretical modelling of rapid surface vaporization with back pressure. AIAA Journal, 17, 519–523.

    Google Scholar 

  73. Knudsen, M. (1915). Die Maximale Verdampfungsgeschwindigkeit des Quecksilbers. Annals of Physics, 47, 697–708.

    Google Scholar 

  74. Koffman, L. D., Plesset, M. S., & Lees, L. (1984). Theory of evaporation and condensation. Physics of Fluids, 27, 876–880.

    Google Scholar 

  75. Kogan, M. N. (1969). Rarefied gas dynamics. New York: Plenum.

    Google Scholar 

  76. Kogan, M. N., & Makashev, N. K. (1971). On the role of the Knudsen layer in the theory of heterogeneous reactions and flows with the surface reactions. Reports of the Academy of Sciences of USSR. Mechanics of Liquids and Gases, No. 6, pp. 3–11 (in Russian).

    Google Scholar 

  77. Korabelnikov, A. V., Nakoryakov, V. E., & Shreiber, I. R. (1981). Taking nonequilibrium vaporization into account in problems of vapour-bubble dynamics. High Temperatures, 19, 586–590.

    Google Scholar 

  78. Korobov, N. M. (1989). Trigonometric sums and their applications. Moscow: Nauka Publishing House (in Russian).

    Google Scholar 

  79. Koura, K. (1998). Improved null-collision technique in the direct simulation Monte Carlo method: application to vibrational relaxation of nitrogen. Computers and Mathematics with Applications, 35, 139–154.

    MATH  Google Scholar 

  80. Kremer, G. M., Silva, A. W., & Alves, G. M. (2010). On inelastic reactive collisions in kinetic theory of chemically reacting gas mixtures. Physica A: Statistical Mechanics and its Applications, 389, 2708–2718.

    Google Scholar 

  81. Kryukov, A. P., & Levashov, V. Yu. (2011). About evaporation-condensation coefficients on the vapor-liquid interface of high thermal conductivity matters. International Journal of Heat and Mass Transfer, 54, 3042–3048.

    Google Scholar 

  82. Kryukov, A. P., Levashov, V. Yu., & Sazhin, S. S. (2004). Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models. International Journal of Heat and Mass Transfer, 47, 2541–2549.

    Google Scholar 

  83. Kryukov, A. P., Levashov, V. Yu., & Shishkova, I. N. (2004). Non-equilibrium recondensation in a dusty medium. In S. A. Zhdanok et al. (Eds.), Proceedings of the 5th Minsk International Heat and Mass Transfer Forum, May 24–28 (Vol. 2, pp. 138–139). Minsk: Research Institute of Heat and Mass Transfer Publishing House (in Russian).

    Google Scholar 

  84. Kryukov, A. P., Levashov, V. Yu., & Shishkova, I. N. (2005). Condensation in the presence of a non-condensable component. Journal of Engineering Physics and Thermophysics, 78, 15–21 (in Russian).

    Google Scholar 

  85. Kryukov, A. P., Levashov, V. Yu., Shishkova, I. N., & Yastrebov, A. K. (2005). The numerical solution of the Boltzmann equation for engineering applications. Moscow: Moscow Power Engineering Institute Publishing House (in Russian).

    Google Scholar 

  86. Kryukov, A. P., Levashov, V. Yu., & Shishkova, I. N. (2006). Flows of vapour-gas mixtures in micro- and nano-systems in the presence of evaporation and condensation. Proceedings of the 5th National Russian Heat Transfer Conference (Vol. 78, Issue No. 3, pp. 164–167), Moscow (in Russian).

    Google Scholar 

  87. Kucherov, R. Ya., & Rickenglaz, L. E. (1959). On hydrodynamics boundary conditions for modelling vaporization and condensation processes. Journal of Experimental and Theoretical Physics, 37, 125–126 (in Russian).

    Google Scholar 

  88. Kucherov, R. Ya., & Rickenglaz, R. E. (1960). On the measurement of the coefficient of condensation. Reports of the Academy of Science of USSR (Doklady), 133, 1130–1131 (in Russian).

    Google Scholar 

  89. Kucherov, R. Ya., Rickenglaz, R. E., & Tzulaya, T. S. (1963). Kinetic theory of additional condensation in the presence of the small temperature jump. Soviet Physics—Technical Physics, 7, 1027–1030.

    Google Scholar 

  90. Labuntsov, D. A. (1967). Analysis of the evaporation and condensation processes. High Temperatures, 5, 579–585.

    Google Scholar 

  91. Labuntsov, D. A., & Kryukov, A. P. (1977). Processes of intensive evaporation. Thermal Power Energy (Teploenergetika), No. 4, 8–11 (in Russian).

    Google Scholar 

  92. Labuntsov, D. A., & Kryukov, A. P. (1979). Analysis of intensive evaporation and condensation. International Journal of Heat and Mass Transfer, 22, 989–1002.

    MATH  Google Scholar 

  93. Lambiotte, R., Ausloos, M., Brenig, L., & Salazar, J. M. (2007). Energy and number of collision fluctuations in inelastic gases. Physica A: Statistical Mechanics and its Applications, 375, 227–232.

    Google Scholar 

  94. Lee, L. L. (1988). Molecular nonideal fluids. Boston: Butterworths.

    Google Scholar 

  95. Lifshitz, E. M., & Pitaevski, L. P. (1979). Physical kinetics. Moscow: Nauka Publishing House (in Russian).

    Google Scholar 

  96. Ludwig, K. F., & Micci, M. (2011). Molecular dynamics simulations of Rayleigh and first wind-induced breakup. Atomization and Sprays, 21, 275–281.

    Google Scholar 

  97. Malyshenko, S. P., & Dunikov, D. O. (2002). On the surface tension corrections in non-uniform and nonequilibrium liquid-gas systems. International Journal of Heat and Mass Transfer, 45, 5201–5208.

    MATH  Google Scholar 

  98. Marek, R., & Straub, J. (2001). Analysis of the evaporation coefficient and the condensation coefficient of water. International Journal of Heat and Mass Transfer, 44, 39–53.

    MATH  Google Scholar 

  99. Mizuguchi, H., Nagayama, G., & Tsuruta, T. (2010). Molecular dynamics study on evaporation coefficient of biodiesel fuel. In Seventh International Conference on Flow Dynamics, Sendai, Japan, pp. 386–387.

    Google Scholar 

  100. Murakami, M., & Oshima, K. (1974). Kinetic approach to the transient evaporation and condensation problem. In M. Becker & M. Fiebig (Eds.), Rarefied gas dynamics. Pors-Wahn: DFVLR Press, paper F6.

    Google Scholar 

  101. Muratova, T. M., & Labuntsov, D. A. (1969). Kinetic analysis of the evaporation and condensation processes. Thermal Physics of High Temperatures, 7, 959–967 (in Russian).

    Google Scholar 

  102. Nagayama, G., & Tsuruta, T. (2003). A general expression for the condensation coefficient based on transition state theory and molecular dynamic simulation. Journal of Chemical Physics, 118, 1392–1399.

    Google Scholar 

  103. Neizvestny, A. I., & Onishenko, L. I. (1979). Experimental determination of the condensation coefficient for distilled water. Physics of Atmosphere and Ocean, 15, 1052–1078 (in Russian).

    Google Scholar 

  104. Nigmatilin, R. I. (1991). Dynamics of multiphase media (Vol. 1). New York: Hemisphere Publishing Corporation.

    Google Scholar 

  105. Odukoya, A., & Naterer, C. F. (2013). Droplet evaporation and de-pinning in rectangular microchannels. International Journal of Heat and Mass Transfer, 56, 127–137.

    Google Scholar 

  106. Peeters, P., Luijten, C. C. M., & van Dongen, M. E. H. (2001). Transitional droplet growth and diffusion coefficients. International Journal of Heat and Mass Transfer, 44, 181–193.

    MATH  Google Scholar 

  107. Petrilla, B. A. (2008). Droplet vaporization of N-heptane using molecular dynamics. Master’s Thesis in Aerospace Engineering. USA: The Pennsylvania State University.

    Google Scholar 

  108. Petrilla, B. A., Trujillo, M. F., & Micci, M. (2010). N-heptane droplet vaporization using molecular dynamics. Atomization and Sprays, 20, 581–593.

    Google Scholar 

  109. Popov, S. P., & Tcheremissine, F. G. (1999). Conservative method for the solution of the Boltzmann equation for centrally symmetrical interaction potentials. Computational Mathematics and Mathematical Physics, 39, 163–176.

    MathSciNet  Google Scholar 

  110. Rogier, F., & Schneider, J. A. (1994). A direct method for solving the Boltzmann equation. Transport Theory and Statistical Physics, 23, 1–3.

    MathSciNet  Google Scholar 

  111. Rose, J. (1998). Interphase matter transfer, the condensation coefficient and dropwise condensation. In J. S. Lee (Ed.), Heat Transfer 1998. Proceedings of 11th International Heat Transfer Conference, August 23–28, 1998, Kyongji, Korea (Vol. 1, pp. 89–104). Seoul: The Korean Society of Mechanical Enginers.

    Google Scholar 

  112. Rose, J. W. (2000). Accurate approximate equations for intensive sub-sonic evaporation. International Journal of Heat and Mass Transfer, 43, 3869–3875.

    MATH  Google Scholar 

  113. Santos, A. (2003). Transport coefficients of \(d\)-dimensional inelastic Maxwell models. Physica A: Statistical Mechanics and its Applications, 321, 442–466.

    MATH  MathSciNet  Google Scholar 

  114. Santos, A. (2006). A simple model kinetic equation for inelastic Maxwell particles. In M. S. Ivanov & A. K. Rebrov (Eds.), Proceedings of the 25th International Symposium on Rarefied Gas Dynamics, July 21–28th 2006, St Petersburg, Russia (pp. 191–196). Novosibirsk: Publishing House of the Siberian Branch of the Russian Academy of Sciences, ISBN 978.

    Google Scholar 

  115. Sazhin, S. S. (1978). Cyclotron whistler-mode instability in a collisional plasma. Geomagnetic research (Vol. 23, pp. 105–107). Moscow: Soviet Radio (in Russian).

    Google Scholar 

  116. Sazhin, S. S. (1993). Whistler-mode waves in a hot plasma. Cambridge: Cambridge University Press.

    Google Scholar 

  117. Sazhin, S. S. (2006). Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 32(2), 162–214.

    MathSciNet  Google Scholar 

  118. Sazhin, S. S., & Serikov, V. V. (1997). Rarefied gas flows: hydrodynamic versus Monte Carlo modelling. Planetary and Space Science, 45, 361–368.

    Google Scholar 

  119. Sazhin, S. S., & Shishkova, I. N. (2009). A kinetic algorithm for modelling the droplet evaporation process in the presence of heat flux and background gas. Atomization and Sprays, 19, 473–489.

    Google Scholar 

  120. Sazhin, S. S., Wild, P., Leys, C., Toebaert, D., & Sazhina, E. M. (1993). The three temperature model for the fast-axial-flow CO\(_{2}\) laser. Journal of Physics D: Applied Physics, 26, 1872–1883.

    Google Scholar 

  121. Sazhin, S. S., Wild, P., Sazhina, E. M., Makhlouf, M., Leys, C., & Toebaert, D. (1994). The three dimensional modelling of the processes in the fast-axial-flow CO\(_{2}\) laser. Journal of Physics D: Applied Physics, 27, 464–469.

    Google Scholar 

  122. Sazhin, S. S., Feng, G., Heikal, M. R., Goldfarb, I., Goldshtein, V., & Kuzmenko, G. (2001). Thermal ignition analysis of a monodisperse spray with radiation. Combustion and Flame, 124, 684–701.

    Google Scholar 

  123. Sazhin, S. S., Kristyadi, T., Abdelghaffar, W. A., & Heikal, M. R. (2006). Models for fuel droplet heating and evaporation: comparative analysis. Fuel, 85, 1613–1630.

    Google Scholar 

  124. Sazhin, S. S., Shishkova, I. N., Kryukov, A. P., & Heikal, M. R. (2007). Evaporation of droplets into a background gas: kinetic modelling. International Journal of Heat and Mass Transfer, 50, 2675–2691.

    MATH  Google Scholar 

  125. Sazhin, S. S., Shishkova, I. N., Kryukov, A. P., Levashov, V. Yu., & Heikal, M. R. (2008). Evaporation of droplets into a background gas in the presence of heat flux: kinetic and hydrodynamic modelling. Proceedings of the 19th International Symposium on Transport Phenomena, 17–20 August, 2008, Reykjavik, Iceland, paper 48.

    Google Scholar 

  126. Sazhin, S. S., Shishkova, I. N., Kryukov, A. P., Levashov, V. Yu., & Heikal, M. R. (2009). A Simple algorithm for kinetic modelling of Diesel fuel droplet evaporation. Progress in Computational Heat and Mass Transfers; Proceedings of 6th ICCHMT, May 18–21, 2009, Guangzhou, China, paper 151 (pp. 386–391).

    Google Scholar 

  127. Sazhin, S. S., Shishkova, I. N., & Heikal, M. (2010). Kinetic modelling of fuel droplet heating and evaporation: Calculations and approximations. International Journal of Engineering Systems Modelling and Simulation, 2, 169–176.

    Google Scholar 

  128. Sazhin, S. S., Xie, J.-F., Shishkova, I. N., Elwardany, A. E., & Heikal, M. R. (2013). A kinetic model of droplet heating and evaporation: effects of inelastic collisions and a non-unity evaporation coefficient. International Journal of Heat and Mass Transfer, 56, 525–537.

    Google Scholar 

  129. Sazhina, E. M., Sazhin, S. S., Heikal, M. R., Babushok, V. I., & Johns, R. (2000). A detailed modelling of the spray ignition process in Diesel engines. Composites Science and Technology, 160, 317–344.

    Google Scholar 

  130. Schrage, R. W. (1953). A theoretical study of interphase mass transfer. New York: Columbia University Press.

    Google Scholar 

  131. Shankar, P. N., & Marble, F. M. (1971). Kinetic theory of transient condensation and evaporation at a plane surface. Physics of Fluids, 14, 510–516.

    MATH  Google Scholar 

  132. Sharipov, F., & Kalempa, D. (2005). Velocity slip and temperature jump coefficients for gaseous mixtures. IV. Temperature jump coefficient. International Journal of Heat and Mass Transfer, 48, 1076–1083.

    MATH  Google Scholar 

  133. Shen, C. (1983). The concentration-jump coefficient in a rarefied binary gas mixture. Journal of Fluid Mechanics, 137, 221–231.

    MATH  Google Scholar 

  134. Shidlovskiy, V. P. (1967). Introduction to the dynamics of rarefied gases. New York: American Elsevier Publishing Company.

    Google Scholar 

  135. Shishkova, I. N., & Sazhin, S. S. (2006). A numerical algorithm for kinetic modelling of evaporation processes. Journal of Computational Physics, 218, 635–653.

    MATH  MathSciNet  Google Scholar 

  136. Shishkova, I. N., & Sazhin, S. S. (2014). A solution of the Boltzmann equations in the presence of three components and inelastic collisions. International Journal of Heat and Mass Transfer, 71, 26–34.

    Google Scholar 

  137. Shishkova, I. N., Sazhin, S. S., & Xie, J.-F. (2013). A solution of the Boltzmann equation in the presence of inelastic collisions. Journal of Computational Physics, 232, 87–99.

    Google Scholar 

  138. Shusser, M., Ytrehus, T., & Weihs, D. (2000). Kinetic theory analysis of explosive boiling of a liquid droplet. Fluid Dynamics Research, 27, 353–367.

    Google Scholar 

  139. Sibold, D., & Urbassek, H. M. (1991). Kinetic study of evaporating flows from cylindrical jets. Physics of Fluids, 3, 870–878.

    MATH  Google Scholar 

  140. Simon, J.-M., Kjelstrup, S., Bedeaux, D., & Hafskjold, B. (2004). Thermal flux through a surface of n-octane. A non-equilibrium molecular dynamics study. Journal of Physical Chemistry, 108, 7186–7195.

    Google Scholar 

  141. Simon, J.-M., Bedeaux, D., Kjelstrup, S., Xu, J., & Johannessen, E. (2006). Integral relations verified by non-equilibrium molecular dynamics. Journal of Physical Chemistry, 110, 18528–18536.

    Google Scholar 

  142. Sizhuk, A., & Yezhov, S. (2006). The dynamic theory for the inelastically colliding particles. Journal of Molecular Liquids, 127, 84–86.

    Google Scholar 

  143. Smit, B., Karaborni, S., & Siepmann, J. I. (1995). Computer simulations of vapour-liquid phase equilibria of n-alkanes. Journal of Chemical Physics, 102, 2126–2140.

    Google Scholar 

  144. Sone, Y. (2000). Kinetic theoretical studies of the half-space problem of evaporation and condensation. Transport Theory and Statistical Physics, 29, 227–260.

    MATH  Google Scholar 

  145. Sone, Y., Aoki, K., Sugimoto, H., & Yamada, T. (1988). Steady evaporation and condensation on a plane condensed phase. Theoretical and Applied Mechanics (Bulgaria), 19, 89–93.

    Google Scholar 

  146. Sone, Y., & Onishi, Y. (1973). Kinetic theory of evaporation and condensation. Journal of Physical Society of Japan, 35, 1773–1776.

    Google Scholar 

  147. Sone, Y., & Onishi, Y. (1978). Kinetic theory of evaporation and condensation—hydrodynamic equation and slip boundary condition. Journal of Physical Society of Japan, 44, 1981–1994.

    Google Scholar 

  148. Sone, Y., & Sugimoto, H. (1990). Strong evaporation from a plane condensed phase. In G. E. A. Meier & P. A. Thompson (Eds.), Adiabatic waves in liquid-vapour systems, Proceedings of IUTAM Symposium, Gottingen, Germany 1989 (pp. 293–304). Berlin: Springer-Verlag.

    Google Scholar 

  149. Sone, Y., & Sugimoto, H. (1993). Kinetic theory analysis of steady evaporating flows from a spherical condensed phase into a vacuum. Physics of Fluids, 5, 1491–1511.

    MATH  Google Scholar 

  150. Sone, Y., & Sugimoto, H. (1995). Evaporation of rarefied gas from a cylindrical condensed phase into a vacuum. Physics of Fluids, 7, 2072–2085.

    MATH  Google Scholar 

  151. Sone, Y., Sugimoto, H., & Aoki, K. (1999). Cylindrical Couette flows of a rarefied gas with evaporation and condensation: reversals and bifurcation of flows. Physics of Fluids, 11, 476–490.

    MATH  MathSciNet  Google Scholar 

  152. Stoecklin, T., & Voronin, A. (2007). H—N\(_{2}\) inelastic collision dynamics on new potential energy surface. Chemical Physics, 331, 385–395.

    Google Scholar 

  153. Sugimoto, H., & Sone, Y. (1992). Numerical analysis of steady flows of a gas evaporating from its cylindrical condensed phase on the basis of kinetic theory. Physics of Fluids, 4, 419–440.

    Google Scholar 

  154. Taguchi, S., Aoki, K., & Takata, S. (2003). Vapor flows condensing at incidence onto a plane condensed phase in the presence of noncondensable gas. I. Subsonic condensation. Physics of Fluids, 15, 689–705.

    Google Scholar 

  155. Taguchi, S., Aoki, K., & Takata, S. (2004). Vapor flows condensing at incidence onto a plane condensed phase in the presence of noncondensable gas. I. Supersonic condensation. Physics of Fluids, 16, 79–92.

    Google Scholar 

  156. Takata, S., & Aoki, K. (1999). Two-surface problems of a multi-component mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory. Physics of Fluids, 11, 2743–2756.

    MATH  Google Scholar 

  157. Tcheremissine, F. G. (1997). Conservative method for the solution of the Boltzmann equation for centrally symmetrical interaction potentials. Reports of Russian Academy of Science, 357, 53–56 (in Russian).

    Google Scholar 

  158. Tcheremissine, F. G. (1998). Conservative evaluation of Boltzmann collision integral in discrete ordinates approximation. Computers and Mathematics with Applications, 35, 215–221.

    MATH  MathSciNet  Google Scholar 

  159. Tcheremissine, F.G. (2000). Discrete approximation and examples of the solution of the Boltzmann equation. In Computational dynamics of rarefied gases (pp. 37–74). Moscow: Computer Centre of Russia Academy of Sciences.

    Google Scholar 

  160. Thomas, J. P., Chang, T. S., & Siewert, S. E. (1974). Reverse temperature gradient in the kinetic theory of evaporation. Physical Review Letters, 33, 680–682.

    Google Scholar 

  161. Tilinin, I. S. (1996). Impact-parameter dependence of inelastic energy losses in slow atom-atom collisions. Nuclear Instruments and Methods in Physics Research B, 115, 102–105.

    Google Scholar 

  162. Titarev, V. A., & Shahov, E. M. (2002). Heat loss and evaporation from a flat surface after a rapid increase of its temperature. Reports of the Russian Academy of Sciences: Mechanics of Liquids and Gases No. 1, pp. 141–153 (in Russian).

    Google Scholar 

  163. Tsuruta, T., & Nagayama, G. (2004). Molecular dynamics studies on the condensation coefficient of water. Journal of Physical Chemistry B, 108, 1736–1743.

    Google Scholar 

  164. Tsuruda, T., Tanaka, H., & Masuika, T. (1999). Condensation/evaporation coefficient and velocity distribution at liquid-vapour interface. International Journal of Heat and Mass Transfer, 42, 4107–4116.

    Google Scholar 

  165. Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics (2nd ed.). Harlow (UK): Longman.

    Google Scholar 

  166. Walther, J. H., & Koumoutsakos, P. (2001). Molecular dynamics simulation of nanodroplet evaporation. ASME Journal of Heat Transfer, 123, 741–748.

    Google Scholar 

  167. Xie, J.-F., Sazhin, S. S., & Cao, B.-Y. (2011). Molecular dynamics study of the processes in the vicinity of the n-dodecane vapour/liquid interface. Physics of Fluids, 23, 112104 (11 pages). doi:10.1063/1.3662004.

  168. Xie, J.-F., Sazhin, S. S., & Cao, B.-Y. (2012). Molecular dynamics study of condensation/evaporation and velocity distribution of n-dodecane at liquid-vapour phase equilibria. Journal of Thermal Science and Technology, 7, 288–300.

    Google Scholar 

  169. Xu, X., Cheng, C., & Chowdhury, I. H. (2004). Molecular dynamics study of phase change mechanisms during femtosecond laser ablation. ASME Journal of Heat Transfer, 126, 727–734.

    Google Scholar 

  170. Yanagihara, H., Stanković, I., Blomgren, F., Rosén, A., & Sakata, I. (2014). A molecular dynamics simulation investigation of fuel droplet in evolving ambient conditions. Combustion and Flame, 161, 541–550.

    Google Scholar 

  171. Yang, T. H., & Pan, C. (2005). Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient. International Journal of Heat and Mass Transfer, 48, 3516–3526.

    MATH  Google Scholar 

  172. Young, J. B. (2011). Calculation of Knudsen layers and jump conditions using the linearised G13 and R13 moment methods. International Journal of Heat and Mass Transfer, 54, 2902–2912.

    MATH  Google Scholar 

  173. Young-ping, P. (1971). Application of kinetic theory to the problem of evaporation and condensation. Physics of Fluids, 14, 306–311.

    Google Scholar 

  174. Ytrehus, T. (1977). Theory and experiments on gas kinetics in evaporation. In J. L. Potter (Ed.), Rarefied gas dynamics, part 2 (pp. 1197–1212). New York: AIAA.

    Google Scholar 

  175. Ytrehus, T., & Aukrust, T. (1986). Mott-Smith solution for weak condensation. In V. Boffi & C. Cercignani (Eds.), Rarefied gas dynamics (Vol. 2, pp. 271–280). Stuttgart: Teubner.

    Google Scholar 

  176. Ytrehus, T., & Ostmo, S. (1996). Kinetic approach to interphase processes. International Journal of Multiphase Flow, 22, 133–135.

    MATH  Google Scholar 

  177. Zahn, D. (2008). Length-dependent nucleation mechanisms rule the vaporization of n-alkanes. Chemical Physics Letters, 467, 80–83.

    Google Scholar 

  178. Zenevich, V. A., Billing, G. D., & Jolicard, G. (1999). Vibrational-rotational energy transfer in H\(_{2}\)–H\(_{2}\) collisions II. The relative roles of the initial rotational excitation of both diatoms. Chemical Physics Letters, 312, 530–535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Sazhin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Sazhin, S. (2014). Kinetic Modelling of Droplet Heating and Evaporation. In: Droplets and Sprays. Springer, London. https://doi.org/10.1007/978-1-4471-6386-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6386-2_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6385-5

  • Online ISBN: 978-1-4471-6386-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics