Skip to main content

Frequency Domain Bootstrap for Time Series

  • Chapter
Empirical Process Techniques for Dependent Data

Abstract

The paper discusses frequency domain bootstrap methods for time series including some recent developments. Attention is focused on nonparametric resampling methods of the periodogram and their application to statistical inference in the frequency domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. W. Anderson: The Statistical Analysis of Time Series. John Wiley, New York, 1971.

    MATH  Google Scholar 

  2. T. W. Anderson: Goodness of fit tests for spectral distributions. Annals of Statistics 21 (1993), 830–847.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. J. Bickel and D. A. Freedman: Some asymptotic theory for the bootstrap. The Annals of Statistics 9 (1981), 1196–1217.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. W. Braun and R. J. Kulperger: Properties of a Fourier bootstrap method for time series. Communications in Statistics, Theory and Methods 276 (1997), 1329–1336.

    Article  MathSciNet  Google Scholar 

  5. P. Brockwell and R. Davis: Time Series: Theory and Methods. Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  6. H. Chen and J. Romano: Bootstrap-assisted goodness-of-fit tests in the frequency domain. Journal of Time Series Analysis 20 (1999), 619–654.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Dahlhaus: Asymptotic normality of spectral estimates. Journal of Multivariate Analysis 16 (1985), 412–431.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Dahlhaus and D. Janas: A frequency domain bootstrap for ratio statistics in time series analysis. The Annals of Statistics 24 (1996), 1934–1963.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Dahlhaus and W. Polonik: Empirical spectral processes and nonparametric maximum likelihood estimation for time series. In: Empirical Processes for Dependent Data. (H. Dehling, T. Mikosch, M. Søresen, eds.) Birkhäuser: Boston, 2002.

    Google Scholar 

  10. M. Falk and R.-D. Reiss: Bootstrapping conditional curves. In: Bootstrapping and Related Techniques, (K. H. Jöckel, G. Rothe and W. Sendler, eds.). Lecture Notes in Economics and Mathematical Systems, 376, Springer Verlag: Berlin, (1992), 173–180.

    Chapter  Google Scholar 

  11. J. Franke and W. Härdie: On bootstrapping kernel spectral estimates. The Annals of Statistics 20 (1992), 121–145.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. A. Freedman: On bootstrapping two-stage least-squares estimates in stationary linear models. The Annals of Statistics 12 (1984), 827–842

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Hainz and R. Dahlhaus: Spectral domain bootstrap tests for stationary time series. Beiträge zur Statistik 61, Universität Heidelberg, (1999).

    Google Scholar 

  14. J. A. Hartigan: Perturbed periodogram estimates of variance. International Statistical Review 58 (1990), 1–7.

    Article  MATH  Google Scholar 

  15. C. M. Hurvich and S. L. Zeger: Frequency domain bootstrap methods for time series. Technical Report # 87–115, (1987), Graduate School of Business Administration, New York University.

    Google Scholar 

  16. D. Janas and R. Dahlhaus: A frequency domain bootstrap for time series. In: Computationally Intensive Statistical Methods. Proceedings of the 26th Symposium on the Interface (J. Sail and A. Lehman, eds.). Interface Foundation of North America, Fairfax Station, VA, (1994), 423–425.

    Google Scholar 

  17. J.-P. Kreiss and J. Franke: Bootstrapping stationary autoregressive moving-average models. Journal of Time Series Analysis 13 (1992), 297–313.

    Article  MathSciNet  MATH  Google Scholar 

  18. J.-P. Kreiss and E. Paparoditis: Autoregressive aided periodogram bootstrap. Discussion Paper No 60, SFB 373, Humboldt Universität Berlin, (2001).

    Google Scholar 

  19. H. Künsch: The jackknife and the bootstrap for general stationary observations. The Annals of Statistics 17 (1989), 1217–1241.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Liu and C. Singh: Moving blocks jackknife and bootstrap capture weak dependence. In: Exploring the Limits of the Bootstrap (R. LePage and L. Billard, eds.), Wiley: New York, (1992), 225–248.

    Google Scholar 

  21. A. Nordgaard: Resampling stochastic processes using a bootstrap approach. In: Bootstrapping and Related Techniques. (K. H. Jöckel, G. Rothe and W. Sendler, eds.). Lecture Note in Economics and Mathematical Systems, 376, Springer, Berlin, (1992), 181–185.

    Chapter  Google Scholar 

  22. E. Paparoditis and D. N. Politis: The local bootstrap for periodogram statistics. Journal of Time Series Analysis 20 (1999), 193–222.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Paparoditis: Spectral density based goodness-of-fit tests for time series models. Scandinavian Journal of Statistics 27 (2000), 143–176.

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Paparoditis and D. N. Politis: The local bootstrap for kernel estimators under general dependence conditions. Annals of the Institute of Statistical Mathematics 52 (2000), 139–159.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. B. Priestley: Spectral Analysis and Time Series. Academic Press: New York, 1981.

    MATH  Google Scholar 

  26. D. Radulović: On the bootstrap and empirical processes for dependent sequences. In: Empirical Processes for Dependent Data. (H. Dehling, T. Mikosch, M. Søresen, eds.) Birkhäuser: Boston, 2002.

    Google Scholar 

  27. J. P. Romano: Bootstrapping the mode. Annals of the Institute of Statistical Mathematics 40 (1988), 565–586.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. G. Shi: Local bootstrap. Annals of the Institute of Statistical Mathematics 43 (1991), 667–676.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Soulier: Empirical process techniques for spectral estimation of fractional processes. In: Empirical Processes for Dependent Data. (H. Dehling, T. Mikosch, M. Søresen, eds.) Birkhäuser: Boston, 2002.

    Google Scholar 

  30. J. W. H. Swanepoel and J. W. Y. van Wyk: The bootstrap applied to power spectral density function. Biometrika 73 (1986), 135–141.

    Article  MathSciNet  Google Scholar 

  31. M. Taniguchi: Minimum contrast estimation for spectral densities of stationary processes. Journal of the Royal Statistical Society, Series B 49 (1987), 315–325.

    MATH  Google Scholar 

  32. J. Theiler, L. S. Paul and D. M. Rubin: Detecting nonlinearity in data with long coherence times. In: Time Series Prediction. (A. Weigend and N. Gershenfeld, eds.). Addison-Welsey: Reading, MA, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paparoditis, E. (2002). Frequency Domain Bootstrap for Time Series. In: Dehling, H., Mikosch, T., Sørensen, M. (eds) Empirical Process Techniques for Dependent Data. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0099-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0099-4_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6611-2

  • Online ISBN: 978-1-4612-0099-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics