Skip to main content

Fluctuation Theory for Lévy Processes

  • Chapter
Lévy Processes

Abstract

Recently there has been renewed interest in fluctuation theory for Lévy processes. Inthis brief survey we describe several aspects of this topic, including Wiener-Hopf factorisation,the ladder processes, Spitzer’s condition, the asymptotic behaviour of Lévy processes at zero and infinity, and other path properties. Some open problems are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alili, L. and Doney, R. A. (1999), Wiener-Hopf factorisation revisited and some applications, Stochastics Stochastics Rep., 66, 87–102.

    MathSciNet  MATH  Google Scholar 

  2. Alili, L. and Chaumont, L. (1999), Quelques nouvelles identités de fluctuation pour les processus de Lévy, C. R. Acad. Sci. Paris Sér. I, 328, 613–616.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertoin, J. (1991), Increase of a Lévy process with no positive jumps, Stochastics Stochastics Rep., 37,247–251.

    MathSciNet  MATH  Google Scholar 

  4. Bertoin, J. (1994), Increase of stable processes, J. Theoret. Probab., 7, 551–563.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertoin, J. (1995). Lévy processes that can creep upwards never decrease. Ann. Inst. Henri Poincaré, 31-2, 379–391.

    MathSciNet  MATH  Google Scholar 

  6. Bertoin, J. (1996), Lévy Processes, Cambridge University Press, Cambridge, UK.

    MATH  Google Scholar 

  7. Bertoin, J. (1997), Regularity of the half-line for Lévy processes, Bull. Sci. Math., 121, 345–354.

    MathSciNet  MATH  Google Scholar 

  8. Bertoin, J. (1999), Subordinators: Examples and Applications: Ecole d’été de Probabilités de St-Flour XXVII, Lecture Notes in Mathematics 1717, Springer-Verlag, Berlin.

    Google Scholar 

  9. Bertoin, J. and Doney, R. A. (1997), Spitzer’s condition for random walks and Lévy processes, Ann. Inst. H. Poincaré, 33, 167–178.

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaumont, L. (1999), Path transformations in Lévy processes, Bull. Internat. Statist. Inst., 1, 459–462.

    MATH  Google Scholar 

  11. Chow, Y. S. (1986), On moments of ladder height variables, Adv. Appl. Math., 7, 46–54.

    Article  MATH  Google Scholar 

  12. Doney, R. A. (1982), On the existence of the mean ladder height for random walk, Z. Wahr. verw. Gebiete, 59, 373–392.

    Article  MathSciNet  MATH  Google Scholar 

  13. Doney, R. A. (1995), Spitzer’s condition and ladder variables for random walks, Probab. Theory Related Fields, 101, 577–580.

    Article  MathSciNet  MATH  Google Scholar 

  14. Doney, R. A. (1996), Increase of Lévy processes, Ann. Probab., 24, 961–970.

    Article  MathSciNet  MATH  Google Scholar 

  15. Doney, R. A. (1999), Fluctuation theory for Lévy processes, Bull. Internat. Statist. Inst., 1, 455–458.

    Google Scholar 

  16. Doney, R. A. and Mailer, R. A. (2000), Stability and attraction to normality at zero and infinity for Lévy processes, preprint.

    Google Scholar 

  17. Doney, R. A. and Mailer, R. A. (2000), Stability of the overshoot for Lévy processes, preprint.

    Google Scholar 

  18. Erickson, K. B. (1973), The strong law of large numbers when the mean is undefined, Trans. Amer. Math. Soc., 185, 371–381.

    Article  MathSciNet  Google Scholar 

  19. Feller, W. (1971), An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., Wiley, New York.

    MATH  Google Scholar 

  20. Fourati, S. (1998), Growth points of Lévy processes and general theory of processes, Probab. Theory Related Fields, 110, 13–49.

    Article  MathSciNet  MATH  Google Scholar 

  21. Fridstedt, B. E. (1974), Sample functions of processes with stationary, independent increments, Adv. Probab., 3, 241–396.

    Google Scholar 

  22. Greenwood, P. E. and Pitman, J. W. (1980), Fluctuation identities for Lévy processes and splitting at the maximum, Adv. Appl. Probab., 12, 893–902.

    Article  MathSciNet  MATH  Google Scholar 

  23. Kemperman, J. H. B. (1961), The Passage Problem for a Markov Chain, University of Chicago Press, Chicago.

    Google Scholar 

  24. Kesten, H. (1969), Hitting probabilities of single points for processes with independent increments, Mem. Amer. Math. Soc., 178, 459–479.

    Google Scholar 

  25. Kesten, H. (1970), The limit points of a normalized random walk, Ann. Math. Statist., 41, 1173–1205.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kesten, H. and Mailer, R. A. (1994), Infinite limits and infinite limit points of random walks and trimmed sums, Ann. Probab., 22, 1473–1523.

    Article  MathSciNet  MATH  Google Scholar 

  27. Marchal, P. (2000), A note on a new Wiener-Hopf factorization by Alili and Doney, Sém. de Probab., to appear.

    Google Scholar 

  28. Millar, P. W. (1973), Exit properties of processes with stationary independent increments, Trans. Amer. Math. Soc., 178, 459–479.

    Article  MathSciNet  MATH  Google Scholar 

  29. Pecherskii, E. A. and Rogozin, B. A. (1969), On the joint distribution of random variables associated with fluctuations of a process with independent increments, Theory Probab. Appl., 14, 410–423.

    Article  Google Scholar 

  30. Rogers, L. C. G. (1984), A new identity for real Lévy processes, Ann. Inst. H. Poincaré, 20, 21–34.

    Google Scholar 

  31. Rogozin, B. A. (1968), Local behaviour of processes with independent increments, Theory Probab. Appl., 13, 482–486.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doney, R. (2001). Fluctuation Theory for Lévy Processes. In: Barndorff-Nielsen, O.E., Resnick, S.I., Mikosch, T. (eds) Lévy Processes. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0197-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0197-7_3

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6657-0

  • Online ISBN: 978-1-4612-0197-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics