Skip to main content

Determination of Total Lipid, Lipid Classes, and Fatty Acids in Aquatic Samples

  • Chapter
Lipids in Freshwater Ecosystems

Abstract

The hydrophobic nature of lipids provides a convenient means of separating them from other compounds in an aqueous sample matrix. Extraction in nonpolar solvents is universally employed and is the basis of the operational definition of lipids. This approach is used routinely in algal biosynthetic studies in which the fate of a radiolabeled precursor is followed into the lipid pool. By adding 14C bicarbonate to a sample from the field (Wainman and Lean, 1992) or a culture (Rai, 1995) and then later extracting the sample with a water-immiscible organic solvent, the “lipid fraction of carbon fixation” (LFCF) can be determined (Wainman and Lean, 1992). By performing a chromatographic separation before counting, this procedure can be further refined to determine the subclasses in which the 4C ends up (Smith and D’ Souza, 1993). Subfractionation is important when a differentiation between allocation to lipid storage and membrane synthesis is required. The radiolabeling approach is convenient, sensitive, and not prone to contamination. However, many ecological studies are not amenable to this approach, and so chemical analysis of the constituents of lipid extracts has to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackman, R.G. Extraction and analysis of omega-3 fatty acids: procedures and pitfalls. In: Drevon, C.A.; Baksaas, I.; Krokan, H.E., eds. Omega-3 Fatty Acids: Metabolism and Biological Effects. Basel: Birkhauser Verlag; 1993:p. 11–20.

    Google Scholar 

  • Ackman, R.G. WCOT (capillary) gas-liquid chromatography. In: Hamilton, R.J.; Rossell, J.B., eds. Analysis of Oils and Fats. London: Elsevier; 1986:p. 137–206.

    Google Scholar 

  • Ahlgren, G.; Gustafsson, I-B.; Boberg, M. Fatty acid content and chemical composition of freshwater microalgae. J. Phycol. 28:37–50; 1992.

    Article  CAS  Google Scholar 

  • Ahlgren, G.; Merino, L. Lipid analysis of freshwater microalgae: a method study. Arch. Hydrobiol. 121:295–306; 1991.

    CAS  Google Scholar 

  • American Oil Chemists’ Society. A.O.C.S. official method Ce lb-89. In: Official Methods and Recommended Practices of the American Oil Chemists’ Society. Champaign, IL: The Society; 1989.

    Google Scholar 

  • Andrade, A.D.; Rubira, A.F.; Matsushita, M.; Souza, N.E. w3 Fatty acids in freshwater fish from south Brazil. J. Am. Oil Chem. Soc. 72:1207–1210; 1995.

    Article  CAS  Google Scholar 

  • Arts, M.T.; Evans, M.S. Optical-digital measurements of energy reserves in calanoid copepods: intersegmental distribution and seasonal patterns. Limnol. Oceanogr. 36:289–298; 1991.

    Google Scholar 

  • Arts, M.T.; Evans, M.S.; Robarts, R.D. Seasonal patterns of total and energy reserve lipids of dominant zooplankton crustaceans from a hyper-eutrophic lake. Oecologia 90:560–571; 1992.

    Article  Google Scholar 

  • Barnes, H.; Blackstock, J. Estimation of lipids in marine animals and tissues: detailed investigation of the sulphophosphovanillin method for ‘total’ lipids. J. Exp. Mar. Biol. Ecol. 12:103–118; 1973.

    Article  CAS  Google Scholar 

  • Berge, J-P.; Gouygou, J-P.; Dubacq, J-P.; Durand, P. Reassessment of lipid composition of the diatom Skeletonema costatum. Phytochemistry 39:1017–1021; 1995.

    Article  CAS  Google Scholar 

  • Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J.Biochem. Physiol. 37:911–917; 1959.

    Article  PubMed  CAS  Google Scholar 

  • Butler, N.M. Lipid storage in Diaptomus kenai (Copepoda; Calanoida): effects of inter-and intraspecific variation in food quality. Hydrobiologia 274:9–16; 1994.

    Article  CAS  Google Scholar 

  • Chen, I.S.; Shen, C-S. J.; Sheppard, A.J. Comparison of methylene chloride and chloroform for the extraction of fats from food products. J. Am. Oil Chem. Soc. 58:599–601; 1981.

    Article  CAS  Google Scholar 

  • Christie, W.W. Separation of phospholipid classes by high-performance liquid chromatography. In: Christie, W.W., ed. Advances in Lipid Methodology—Three. Dundee, UK: Oily Press; 1996:p. 77–107.

    Google Scholar 

  • Christie, W.W. Gas Chromatography and Lipids. A Practical Guide. Ayr, UK: Oily Press; 1989.

    Google Scholar 

  • Conte, M.H.; Bishop, J.K.B. Nanogram quantification of nonpolar lipid classes in environmental samples by high performance thin layer chromatography. Lipids 23:493–500; 1988.

    Article  CAS  Google Scholar 

  • Cooksey, K.E.; Guckert, J.B.; Williams, S.A.; Callis, P.R. Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. J. Microbiol. Methods 6:333–345; 1987.

    Article  CAS  Google Scholar 

  • Delbeke, K.; Teklemariam, T.; de la Cruz, E.; Sorgeloos, P. Reducing variability in pollution data: the use of lipid classes for normalization of pollution data in marine biota. Int. J. Environ. Anal. Chem. 58:147–162; 1995.

    Article  CAS  Google Scholar 

  • Dembitsky, V.M.; Rozentsvet, O.A. Distribution of polar lipids in some marine, brackish and freshwater green macrophytes. Phytochemistry 41:483–488; 1996.

    Article  CAS  Google Scholar 

  • Dembitsky, V.M.; Rezanka, T.; Kashin, A.G. Comparative study of the endemic freshwater fauna of Lake Baikal—VI. Unusual fatty acid and lipid composition of the endemic sponge Lubomirskia baicalensis and its amphipod crustacean parasite Brandtia (Spinacanthus) parasitica. Comp. Biochem. Physiol. 109B:415–426; 1994a.

    CAS  Google Scholar 

  • Dembitsky, V.M.; Kashin, A.G.; Rezanka, T. Comparative study of the endemic freshwater fauna of Lake Baikal—V. Phospholipid and fatty acid composition of the deep-water amphipod crustacean Acanthogammarus (Brachyuropus) grewingkii. Comp. Biochem. Physiol. 108B:443–448; 1994b.

    CAS  Google Scholar 

  • Fodor, E.; Jones,R.H.; Buba, C.; Kitajka, K.; Dey, I.; Farkas, T. Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study. Lipids 30:1119–1126; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509; 1957.

    PubMed  CAS  Google Scholar 

  • Gardner, W.S.; Frez, W.A.; Cichocki, E.A.; Parrish, C.C. Micromethod for lipids in aquatic invertebrates. Limnol. Oceanogr. 30:1099–1105; 1985.

    CAS  Google Scholar 

  • Harrell, R.M.; Woods, L.C., III. Comparative fatty acid composition of eggs from domesti-cated and wild striped bass (Morone saxatilis). Aquaculture 133:225–233; 1995.

    Article  CAS  Google Scholar 

  • Heinz, E. Plant glycolipids: structure, isolation and analysis. In: Christie, W.W., ed. Ad-vances in Lipid Methodology Three. Dundee, UK: Oily Press; 1996:p. 211–332.

    Google Scholar 

  • Henderson, R.J. Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Arch. Anim. Nutr. 49:5–22; 1996.

    CAS  Google Scholar 

  • Kaitaranta, J.K.; Ke, P.J. TLC-FID assessment of lipid oxidation as applied to fish lipids rich in triglycerides. J. Am. Oil Chem. Soc. 58:710–713; 1981.

    Article  CAS  Google Scholar 

  • Kinsella, J.E.; Shimp, J.L.; Mai, J.; Weihrauch, J. Fatty acid content and composition of freshwater finfish. J. Am. Oil Chem. Soc. 54:424–429; 1977.

    Article  CAS  Google Scholar 

  • Liu, K-S. Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. J. Am. Oil Chem. Soc. 71:1179–1187; 1994.

    Article  CAS  Google Scholar 

  • Marsh, J.B.; Weinstein, D.B. Simple charring method for determination of lipids. J. Lipid Res. 7:574–576; 1966.

    PubMed  CAS  Google Scholar 

  • Meyers, P.A.; Eadie, B.J. Sources, degradation and recycling of organic matter associated with sinking particles in Lake Michigan. Organic Geochem. 20:47–56; 1993.

    Article  CAS  Google Scholar 

  • Morrison, W.R.; Smith, L.M. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5:600–608; 1964.

    PubMed  CAS  Google Scholar 

  • Myher, J.J.; Kuksis, A. Determination of plasma total lipid profiles by capillary gas-liquid chromatography. J. Biochem. Biophys. Methods 10:13–23; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Napolitano, G.E. The relationship of lipids with light and chlorophyll measurements in freshwater algae and periphyton. J. Phycol. 30:943–950; 1994.

    Article  CAS  Google Scholar 

  • Napolitano, G.E.; Heras, H.; Stewart, A.J. Fatty acid composition of freshwater phytoplankton during a red tide event. Biochem. System. Ecol. 23:65–69; 1995.

    CAS  Google Scholar 

  • Nelson, G.J. Isolation and purification of lipids from biological matrices. In: Perkins, E.G., ed. Analysis of Fats, Oils and Lipoproteins. Champaign, IL: American Oil Chemists’ Society; 1991:p. 22–59.

    Google Scholar 

  • Olsen, R.E.; Henderson, R.J. The rapid analysis of neutral and polar marine lipids using double-development HPTLC and scanning densitometry. J. Exp. Mar. Biol. Ecol. 129:189–197; 1989.

    Article  CAS  Google Scholar 

  • Parrish, C.C. Dissolved and particulate marine lipid classes: a review. Mar. Chem. 23:1740; 1988.

    Google Scholar 

  • Parrish, C.C. Separation of aquatic lipid classes by Chromarod thin-layer chromatography with measurement by Iatroscan flame ionization detection. Can. J. Fish. Aquat. Sci. 44:722–731; 1987.

    Article  CAS  Google Scholar 

  • Parrish, C.C.; McKenzie, C.H.; MacDonald, B.A.; Hatfield, E.A. Seasonal studies of seston lipids in relation to microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar. Ecol. Prog. Ser. 129:151–164; 1995.

    CAS  Google Scholar 

  • Parrish, C.C.; Eadie, B.J.; Gardner, W.S.; Cavaletto, J.F. Lipid class and alkane distribution in settling particles of the upper Laurentian Great Lakes. Organic Geochem. 18:33–40; 1992a.

    Article  CAS  Google Scholar 

  • Parrish, C.C.; Bodennec, G.; Gentien, P. Separation of polyunsaturated and saturated lipids from marine phytoplankton on silica gel coated Chromarods. J. Chromatogr. 607:97–104; 1992b.

    Article  CAS  Google Scholar 

  • Parsons, T.R.; Maita, Y.; Lalli, C.M. A Manual of Chemical and Biological Methods for Seawater Analysis. Oxford: Pergamon Press, 1989.

    Google Scholar 

  • Rahman, S.A.; Huah, T.S.; Hassan, O.; Daud, N.M. Fatty acid composition of some Malaysian freshwater fish. Food Chem. 54:45–49; 1995.

    Article  CAS  Google Scholar 

  • Rai, H. The influence of photon flux density (PFD) on short term 14C incorporation into proteins, carbohydrates and lipids in freshwater algae. Hydrobiologia 308:51–59; 1995.

    Article  CAS  Google Scholar 

  • Ratnayake, W.M.N.; Ackman, R.G. Lipid analyses: part II. In: Vergroesen, A.J.; Crawford, M., eds. The Role of Fats in Human Nutrition. London: Academic Press; 1989:p. 515–565.

    Google Scholar 

  • Renaud, C.B.; Kaiser, K.L.E.; Comba, M.E. Historical versus recent levels of organochlorine contaminants in lamprey larvae of the St. Lawrence River basin, Quebec. Can. J. Fish. Aquat. Sci. 52:268–275; 1995a.

    Article  CAS  Google Scholar 

  • Renaud, C.B.; Kaiser, K.L.E.; Comba, M.E.; Metcalfe-Smith, J.L. Comparison between lamprey ammocoetes and bivalve molluscs as biomonitors of organochlorine contaminants. Can. J. Fish. Aquat. Sci. 52:276–282; 1995b.

    Article  CAS  Google Scholar 

  • Rezanka, T.; Dembitsky, V.M. Identification of unusual cyclopropane monounsaturated fatty acids from the deep-water lake invertebrate Acanthogammarns grewingkii. Comp. Biochem. Physiol. 109B:407–413; 1994.

    CAS  Google Scholar 

  • Sargent, J.R.; Parkes, R.J.; Mueller-Harvey, I.; Henderson, R.J. Lipid biomarkers in marine ecology. In: Sleigh, M.A. Microbes in the Sea. Chichester, UK: Ellis Horwood Ltd.; 1987:p. 119–138.

    Google Scholar 

  • Sasaki, G.C.; Capuzzo, J.M. Degradation of Anemia lipids under storage. Comp. Biochem. Physiol. 78B:525–531; 1984.

    Google Scholar 

  • Shaikh, N.A. Extraction, purification, and analysis of lipids from animal tissues. In:Fozzard, H.A. et al., eds. The Heart and Cardiovascular System. New York: Raven Press; 1986:p. 289–302.

    Google Scholar 

  • Smith, R.E.H.; D’Souza, F.M.L. Macromolecular labeling patterns and inorganic nutrient limitation of a North Atlantic spring bloom. Mar. Ecol. Prog. Ser. 92:111–118; 1993.

    Article  CAS  Google Scholar 

  • Vanderploeg, H.A.; Gardner, W.S.; Parrish, C.C.; Liebig, J.L.; Cavaletto, J.F. Lipids and life-cycle strategy of a hypolimnetic copepod in Lake Michigan. Limnol. Oceanogr. 37:413–424; 1992.

    Article  CAS  Google Scholar 

  • Verreth, J.; Custers, G.; Melger, W. The metabolism of neutral and polar lipids in eleutheroembryos and starving larvae of the African catfish Clarias gariepinus. J. Fish. Biol. 45:961–971; 1994.

    CAS  Google Scholar 

  • Wainman, B.C.; Lean, D.R.S. Methodological concerns in measuring the lipid fraction of carbon fixation. Hydrobiologia 273:111–120; 1994.

    Article  CAS  Google Scholar 

  • Wainman, B.C.; Lean, D.R.S. Carbon fixation into lipid in small freshwater lakes. Limnol. Oceanogr. 37:956–965; 1992.

    CAS  Google Scholar 

  • Wainman, B.C.; McQueen, D.J.; Lean, D.R.S. Seasonal trends in zooplankton lipid concentration and class in freshwater lakes. J. Plankton Res. 15:1319–1332; 1993.

    Article  CAS  Google Scholar 

  • Wood, R. Sample preparation, derivatization and analysis. In: Perkins, E.G., ed. Analysis of Fats, Oils and Lipoproteins. Champaign, IL: American Oil Chemists’ Society; 1991:p. 236–269.

    Google Scholar 

  • Yang, Z.; Parrish, C.C., Helleur, R.J. Automated gas chromatographic method for neutral lipid carbon number profiles in marine samples. J. Chromatogr. Sci. 34:556–568; 1996.

    CAS  Google Scholar 

  • Yunker, M.B.; Macdonald, R.W.; Whitehouse, B.G. Phase associations and lipid distributions in the seasonally ice-covered Arctic estuary of the Mackenzie Shelf. Organic Geochem. 22:651–669; 1994.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parrish, C.C. (1999). Determination of Total Lipid, Lipid Classes, and Fatty Acids in Aquatic Samples. In: Arts, M.T., Wainman, B.C. (eds) Lipids in Freshwater Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0547-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0547-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6813-0

  • Online ISBN: 978-1-4612-0547-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics