Skip to main content

Abstract

This chapter presents an overview of wavelet-based image coding. We develop the basics of image coding with a discussion of vector quantization. We motivate the use of transform coding in practical settings and describe the properties of various decorrelating transforms. We motivate the use of the wavelet transform in coding using rate-distortion considerations as well as approximation-theoretic considerations. Finally we give an overview of current coders in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform.IEEE Transactions on Computers C-23:90–93January1974.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Antonini, M. Barlaud, and P. Mathieu. Image Coding Using Wavelet Transform.IEEE Trans. Image Proc. 1(2):205–220April1992.

    Article  Google Scholar 

  3. Y. Arai, T. Agui, and M. Nakajima. A fast DCT-SQ scheme for images.Transactions of the IEICE 71(11):1095November 1988.

    Google Scholar 

  4. Ilangko Balasingham and Tor A. Ramstad. On the relevance of the regularity constraint in subband image coding. InProc. Asilomar Conference on Signals Systems and ComputersPacific Grove, 1997.

    Google Scholar 

  5. T. Bell, J. G. Cleary, and I. H. Witten.Text Compression.Prentice Hall, Englewood Cliffs, NJ, 1990.

    Google Scholar 

  6. T. Berger.Rate Distortion Theory.Prentice Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  7. Christopher M. Brislawn. Classification of nonexpansive symmetric extension transforms for multirate filter banks.Applied and Comp. Harmonic Analysis3:337–357, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Sidney Burrus, Ramesh A. Gopinath, and Haitao Guo.Introduction to Wavelets and Wavelet Transforms: A Primer.Prentice-Hall, Englewood Cliffs, NJ, 1997.

    Google Scholar 

  9. Peter J. Burt and Edward H. Adelson. The Laplacian pyramid as a compact image code.IEEE Transactions on CommunicationsCOM31(4), April 1983.

    Google Scholar 

  10. W. H. Chen and C. H. Smith. Adaptive coding of monochrome and color images. IEEE Transactions on Communications COM25(11):1285–1292, November 1977.

    Article  Google Scholar 

  11. P. A. Chou, T. Lookabaugh, and R. M. Gray. Entropy-constrained vector quantization.IEEE Transactions on Information Theory37(1):31–42, January 1989.

    MathSciNet  Google Scholar 

  12. C. Chrysafis and A. Ortega. Efficient context based entropy coding for lossy wavelet image compression. InProc. Data Compression Conferencepages 241–250, Snowbird, Utah, 1997.

    Google Scholar 

  13. Ronald R. Coifman and Yves Meyer. Nouvelles bases orthonormées de l2(r) ayant la structure du système de Walsh. Technical Report Preprint, Department of Mathematics, Yale University, 1989.

    Google Scholar 

  14. Ronald R. Coifman and Mladen Victor Wickerhauser. Entropy based algorithms for best basis selection.IEEE Transactions on Information Theory32:712–718March1992.

    Google Scholar 

  15. T.M. Cover and J.A. Thomas.Elements of Information Theory. John Wiley & Sons, Inc., New York, 1991.

    Book  MATH  Google Scholar 

  16. A. Croisier, D. Esteban, and C. Galand. Perfect channel splitting by use of interpolation/decimation/tree decomposition techniques. InProc. Int. Symp. on Information Circuits and SystemsPatras, Greece, 1976.

    Google Scholar 

  17. M. Crouse and K. Ramchandran. Joint thresholding and quantizer selection for decoder-compatible baseline JPEG. InProc. ICASSPMay 1995.

    Google Scholar 

  18. Ingrid Daubechies.Ten Lectures on Wavelets.SIAM, Philadelphia, PA, 1992.

    Book  Google Scholar 

  19. Geoffrey M. Davis. The wavelet image compression construction kit.http://www.cs.dartmouth.edu/gdavis/wavelet/wavelet.html1996.

    Google Scholar 

  20. Geoffrey M. Davis and Sumit Chawla. Image coding using optimized significance tree quantization. In James A. Storer and Martin Cohn, editorsProc. Data Compression Conferencepages 387–396, March 1997.

    Google Scholar 

  21. G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes.Constructive Approximation5(1):49–68,1989.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. A. DeVore, B. Jawerth, and B. J. Lucier. Image Compression through Wavelet Transform Coding.IEEE Trans. Info. Theory38(2):719–746, March 1992.

    Article  MathSciNet  MATH  Google Scholar 

  23. Donald L. Duttweiler and Christodoulos Chamzas. Probability estimation in arithmetic and adaptive-Huffman entropy coders.IEEE Transactions on Image Processing4(3):237–246, March 1995.

    Article  Google Scholar 

  24. N. Farvardin and J. W. Modestino. Optimum quantizer performance for a class of non-Gaussian memoryless sources.IEEE Transactions on Information Theory30:485–497, May 1984.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Feig and E. Linzer. Discrete cosine transform algorithms for image data compression. InElectronic Imaging ‘80 Eastpages 84–87, Boston, MA, October 1990.

    Google Scholar 

  26. G. D. Forney. The Viterbi algorithm.Proceedings of the IEEE61(3):268–278, March 1973.

    Article  MathSciNet  Google Scholar 

  27. J. Garcia-Frias and J. D. Villasenor. An analytical treatment of channel-induced distortion in run length coded image subbands. InProc. Data Compression Conferencepages 52–61, Snowbird, Utah, March 1997.

    Google Scholar 

  28. A. Gersho and R. M. Gray.Vector Quantization and Signal Compression.Kluwer Academic Publishers, 1992.

    Book  MATH  Google Scholar 

  29. Allen Gersho. Asymptotically optimal block quantization.IEEE Transactions on Information TheoryIT-25(4):373–380, July 1979.

    Article  MATH  Google Scholar 

  30. B. Girod, F. Hartung, and U. Horn. Subband image coding. InSubband and wavelet transforms: design and applicationsBoston, MA: Kluwer Academic Publishers, 1995.

    Google Scholar 

  31. Herbert Gish and John N. Pierce. Asymptotically efficient quantizing.IEEE Transactions on Information TheoryIT-14(5):676–683, September 1968.

    Article  Google Scholar 

  32. R. M. Gray, J. C. Kieffer, and Y. Linde. Locally optimal block quantizer design.Information and Control45:178–198, May 1980.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Herley, J. Kovacevié, K. Ramchandran, and M. Vetterli. Tilings of the time-frequency plane: Construction of arbitrary orthogonal bases and fast tiling algorithms.IEEE Transactions on Signal Processing41:3341–3359, December 1993.

    Article  MATH  Google Scholar 

  34. Cormac Herley. Boundary filters for finite-length signals and time-varying filter banks.IEEE Trans. Circuits and Systems II42(2):102–114, February 1995.

    Article  Google Scholar 

  35. Cormac Herley and Martin Vetterli. Orthogonal time-varying filter banks and wavelets. InProc. IEEE Int. Symp. Circuits Systemsvolume 1, pages 391–394, May 1993.

    Google Scholar 

  36. Cormac Herley, Zixiang Xiong, Kannan Ramchandran, and Michael T. Orchard. Joint space-frequency segmentation using balanced wavelet packet trees for least-cost image representation.IEEE Transactions on Image ProcessingSeptember 1997.

    Google Scholar 

  37. Roger A. Horn and Charles R. Johnson.Matrix Analysis.Cambridge University Press, New York, 1990.

    MATH  Google Scholar 

  38. J. Y. Huang and P. M. Schultheiss. Block quantization of correlated Gaussian random variables.IEEE Transactions on CommunicationsCS-11:289–296, September 1963.

    Article  Google Scholar 

  39. H. Jafarkhani, N. Farvardin, and C. C. Lee. Adaptive image coding based on the discrete wavelet transform. InProc. IEEE Int. Conf. Image Proc. (ICIP)volume 3, pages 343–347, Austin, TX, November 1994.

    Google Scholar 

  40. N. S. Jayant and P. Noll.Digital Coding of waveforms.Prentice-Hall, Englewood Cliffs, NJ, 1984.

    Google Scholar 

  41. R. L. Joshi, T.R. Fischer, and R. H. Bamberger. Optimum classification in subband coding of images. InProc. IEEE Int. Conf. Image Proc. (ICIP)volume 2, pages 883–887, Austin, TX, November 1994.

    Google Scholar 

  42. R. L. Joshi, H. Jafarkhani, J. H. Kasner, T. R. Fisher, N. Farvardin, and M. W. Marcellin. Comparison of different methods of classification in subband coding of images.IEEE Transactions on Image Processingsubmitted.

    Google Scholar 

  43. J. H. Kasner and M. W. Marcellin. Adaptive wavelet coding of images. InProc. IEEE Int. Conf. Image Proc. (ICIP)volume 3, pages 358–362, Austin, TX, November 1994.

    Google Scholar 

  44. Jelena Kovacevié and Wim Sweldens. Interpolating filter banks and wavelets in arbitrary dimensions. Technical report, Lucent Technologies, Murray Hill, NJ, 1997.

    Google Scholar 

  45. A. S. Lewis and G. Knowles. Image compression using the 2-d wavelet transform.IEEE Transactions on Image Processing1(2):244–250, April 1992.

    Article  Google Scholar 

  46. S. M. LoPresto, K. Ramchandran, and M. T. Orchard. Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework. InProc. Data Compression Conferencepages 221–230, Snowbird, Utah, 1997.

    Google Scholar 

  47. Stèphane Mallat. A theory for multiresolution signal decomposition: the wavelet representation.IEEE Trans. Pattern Analysis and Machine Intelligence11(7):674–693, July 1989.

    Article  MATH  Google Scholar 

  48. Stèphane Mallat and Frédéric Falzon. Understanding image transform codes. InProc. SPIE Aerospace Conf.Orlando, April 1997.

    Google Scholar 

  49. M. W. Marcellin. On entropy-constrained trellis coded quantization.IEEE Transactions on Communications42(1):14–16, January 1994.

    Article  MathSciNet  Google Scholar 

  50. M. W. Marcellin and T. R. Fischer. Trellis coded quantization of memoryless and Gauss-Markov sources.IEEE Transactions on Communications38(1):82–93, January 1990.

    Article  MathSciNet  Google Scholar 

  51. D. Marpe and H. L. Cycon. Efficient pre-coding techniques for wavelet-based image compression. Submitted to PCS, Berlin, 1997.

    Google Scholar 

  52. Pierre Moulin. A multiscale relaxation algorithm for SNR maximization in nonorthogonal subband coding.IEEE Transactions on Image Processing4(9):1269–1281, September 1995.

    Article  Google Scholar 

  53. A. Nosratinia and M. T. Orchard. A multi-resolution framework for backward motion compensation. InProc. SPIE Symposium on Electronic ImagingSan Jose, CA, February 1995.

    Google Scholar 

  54. W. Pennebaker and J. Mitchell.JPEG still image data compression standard.Van Nostrand Reinhold, New York, 1993.

    Google Scholar 

  55. W. B. Pennebaker and J. L. Mitchell.JPEG Still Image Data Compression Standard.Van Nostrand Reinhold, New York, 1992.

    Google Scholar 

  56. Kannan Ramchandran and Martin Vetterli. Best wavelet packet bases in a rate-distortion sense.IEEE Transactions on Image Processing2(2):160–175, 1992.

    Article  Google Scholar 

  57. K.R. Rao and P. Yip.The Discrete Cosine Transform.Academic Press, New York, 1990.

    Google Scholar 

  58. S. L. Regunathan, K. Rose, and S. Gadkari. Multimode image coding for noisy channels. InProc. Data Compression Conferencepages 82–90, Snowbird, Utah, March 1997.

    Google Scholar 

  59. Olivier Rioul. Simple regularity criteria for subdivision schemes.SIAM J. Math. Analysis23:1544–1576, November 1992.

    Article  MathSciNet  MATH  Google Scholar 

  60. Olivier Rioul. Regular wavelets: a discrete-time approach.IEEE Transactions on Signal Processing41(12):3572–3579, December 1993.

    Article  MATH  Google Scholar 

  61. A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set partitioning in hierarchical trees.IEEE Transactions on Circuits and Systems for Video Technology6(3):243–250, June 1996.

    Article  Google Scholar 

  62. A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set partitioning in hierarchichal trees.IEEE Trans. Circuits and Systems for Video Technology6(3):243–250, June 1996.

    Article  Google Scholar 

  63. Criminal Justice Information Services.WSQ Gray-Scale Fingerprint Image Compression Specification (ver. 2.0).Federal Bureau of Investigation, February 1993.

    Google Scholar 

  64. C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion.In IRE Nat. Cony. Rec.volume 4, pages 142–163, March 1959.

    Google Scholar 

  65. J. Shapiro. Embedded image coding using zero-trees of wavelet coefficients.IEEE Transactions on Signal Processing41(12):3445–3462, December 1993.

    Article  MATH  Google Scholar 

  66. J. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.IEEE Transactions on Signal Processing41(12):3445–3462, December 1993.

    Article  MATH  Google Scholar 

  67. P. G. Sherwood and K. Zeger. Progressive image coding on noisy channels. InProc. Data Compression Conferencepages 72–81, Snowbird, Utah, March 1997.

    Google Scholar 

  68. Y. Shoham and A. Gersho. Efficient bit allocation for an arbitrary set of quantizers.IEEE Trans. Acoustics Speech and Signal Processing36(9):1445–1453, September 1988.

    MATH  Google Scholar 

  69. J. R. Smith and S. F. Chang. Frequency and spatially adaptive wavelet packets. InProc. ICASSPMay 1995.

    Google Scholar 

  70. M. J. T. Smith and T. P. Barnwell. A procedure for designing exact reconstruction filter banks for tree structured subband coders. InProc. ICASSPpages 27.1.1–27.1.4, San Diego, CA, March 1984.

    Google Scholar 

  71. M. J. T. Smith and T. P. Barnwell. Exact reconstruction techniques for tree-structured subband coders.IEEE Trans. ASSPASSP-34:434–441, June 1986.

    Article  Google Scholar 

  72. G. Strang and G. Fix. A Fourier analysis of the finite element variational method.Constructive Aspects of Functional Analysispages 796–830, 1971.

    Google Scholar 

  73. Gilbert Strang and Truong Q. Nguyen.Wavelets and Filter Banks.Wellesley-Cambridge Press, Wellesley, MA, 1996.

    Google Scholar 

  74. W. Sweldens and R. Piessens. Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions.SIAM Journal of Numerical Analysis31(4):1240–1264, August 1994.

    Article  MathSciNet  MATH  Google Scholar 

  75. Wim Sweldens. The lifting scheme: A new philosophy in biorthogonal wavelet constructions. In A. F. Laine and M. Unser, editorsWavelet Applications in Signal and Image Processing IIIpages 68–79. Proc. SPIE 2569, 1995.

    Google Scholar 

  76. Wim Sweldens and Peter Schröder. Building your own wavelets at home. Technical Report 1995:5, Industrial Mathematics Initiative, Mathematics Department, University of South Carolina, 1995.

    Google Scholar 

  77. David Taubman and Avideh Zakhor. Multirate 3-D subband coding of video.IEEE Trans. Image Proc.3(5), September 1994.

    Google Scholar 

  78. L. Fejes Toth. Sur la representation d’une population infinie par un nombre fini d’elements.Acta Math. Acad. Scient. Hung.10:299–304, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  79. G. Ungerboeck. Channel coding with multilevel/phase signals.IEEE Transactions on Information TheoryIT-28(1):55–67, January 1982.

    Article  MathSciNet  MATH  Google Scholar 

  80. Michael Unser. Approximation power of biorthogonal wavelet expansions.IEEE Transactions on Signal Processing44(3):519–527, March 1996.

    Article  Google Scholar 

  81. P.P. Vaidyanathan. Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having perfect reconstruction property.IEEE Trans. ASSPASSP-35:476–492, April 1987.

    Article  MATH  Google Scholar 

  82. P.P. Vaidyanathan.Multirate systems and filter banks.Prentice Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  83. M. Vetterli. Splitting a signal into subband channels allowing perfect reconstruction. InProc. LASTED Conf. Appl. Signal ProcessingParis, France, June 1985.

    Google Scholar 

  84. M. Vetterli. Filter banks allowing perfect reconstruction.Signal Processing10:219–244, April 1986.

    Article  MathSciNet  Google Scholar 

  85. Martin Vetterli and Cormac Herley. Wavelets and filter banks: Theory and design.IEEE Trans. Acoust. Speech Signal Proc.40(9):2207–2232, 1992.

    MATH  Google Scholar 

  86. Martin Vetterli and Jelena Kovacevié.Wavelets and Subband Coding.Prentice Hall, Englewood Cliffs, NJ, 1995.

    Google Scholar 

  87. J. Villasenor, B. Belzer, and J. Liao. Wavelet filter evaluation for image compression.IEEE Transactions on image processing2:1053–1060, August 1995.

    Article  Google Scholar 

  88. Brian A. Wandell.Foundations of Vision.Sinauer Associates, Sunderland, MA, 1995.

    Google Scholar 

  89. A.B. Watson, G.Y. Yang, J.A. Soloman, and J. Villasenor. Visual thresholds for wavelet quantization error. InProceedings of the SPIEvolume 2657, pages 382–392, 1996.

    Article  Google Scholar 

  90. Mladen Victor Wickerhauser.Adapted Wavelet Analysis from Theory to Software.A. K. Peters, Wellesley, MA, 1994.

    Google Scholar 

  91. J. W. Woods and T. Naveen. A filter based allocation scheme for subband compression of HDTV.IEEE Trans. Image Proc.IP-1:436–440, July 1992.

    Article  Google Scholar 

  92. Z. Xiong, K. Ramchandran, M. Orchard, and K. Asai. Wavelet packets-based image coding using joint space-frequency quantization.Preprint1996.

    Google Scholar 

  93. Z. Xiong, K. Ramchandran, and M. T. Orchard. Space-frequency quantization for wavelet image coding.IEEE Transactions on Image Processing6(5):677–693, May 1997.

    Article  Google Scholar 

  94. Zixiang Xiong, Kannan Ramchandran, and Michael T. Orchard. Space-frequency quantization for wavelet image coding.preprint1995.

    Google Scholar 

  95. Y. Yoo, A. Ortega, and B. Yu. Progressive classification and adaptive quantization of image subbands. Preprint, 1997.

    Google Scholar 

  96. Paul L. Zador. Asymptotic quantization error of continuous signals and the quantization dimension.IEEE Transactions on Information TheoryIT-28(2):139–149, March 1982.

    Article  MATH  Google Scholar 

  97. K. Zeger, J. Vaisey, and A. Gersho. Globally optimal vector quantizer design by stochastic relaxation.IEEE Transactions on Signal Processing40(2):310–322, February 1992.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, G.M., Nosratinia, A. (1999). Wavelet-Based Image Coding: An Overview. In: Datta, B.N. (eds) Applied and Computational Control, Signals, and Circuits. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0571-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0571-5_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6822-2

  • Online ISBN: 978-1-4612-0571-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics