Skip to main content

A Class of Statistics with Asymptotically Normal Distribution

  • Chapter
Breakthroughs in Statistics

Part of the book series: Springer Series in Statistics ((PSS))

Abstract

Let X 1 …, X n be n independent random vectors, X v = , and Φ(x 1 …, x m ) a function of m(≤n) vectors . A statistic of the form , where the sum ∑″ is extended over all permutations (α1 …, α m ) of different integers, 1 α≤ (αin, is called a U-statistic. If X 1, …, X n have the same (cumulative) distribution function (d.f.) F(x), U is an unbiased estimate of the population characteristic θ(F) = ff Φ(x 1,…, x m ) dF(x 1) … dF(x m ). θ(F) is called a regular functional of the d.f. F(x). Certain optimal properties of U-statistics as unbiased estimates of regular functionals have been established by Halmos [9] (cf. Section 4)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Cramér, Random Variables and Probability Distributions, Cambridge Tracts in Math., Cambridge, 1937.

    Google Scholar 

  2. H. Cramér, Mathematical Methods of Statistics, Princeton University Press, 1946.

    Google Scholar 

  3. H.E. Daniels, “The relation between measures of correlation in the universe of sample permutations,” Biometrika, Vol. 33 (1944), pp. 129–135.

    Article  MathSciNet  MATH  Google Scholar 

  4. H.E. Daniels and M.G. Kendall, “The significance of rank correlations where parental correlation exists,” Biometrika, Vol. 34 (1947), pp. 197–208.

    MathSciNet  MATH  Google Scholar 

  5. G.B. Dantzig, “On a class of distributions that approach the normal distribution function,” Annals of Math. Stat., Vol. 10 (1939) pp. 247–253.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Esscher, “On a method of determining correlation from the ranks of the variates,” Skandinavisk Aktuar, tids., Vol. 7 (1924), pp. 201–219.

    Google Scholar 

  7. W. Feller, “The fundamental limit theorems in probability,” Am. Math. Soc. Bull., Vol. 51 (1945), pp. 800–832.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Gini, “Sulla misura delia concentrazione e delia variabilità dei caratteri,” Atti del R. Istituto Veneto di S.L.A., Vol. 73 (1913-14), Part 2.

    Google Scholar 

  9. P.R. Halmos, “The theory of unbiased estimation,” Annals of Math. Stat., Vol. 17 (1946), pp. 34–43.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. H öffding, “On the distribution of the rank correlation coefficient T, when the variates are not independent,” Biometrika, Vol. 34 (1947), pp. 183–196.

    MathSciNet  Google Scholar 

  11. H. Hotelling and M.R. Pabst, “Rank correlation and tests of significance involving no assumptions of normality,” Annals of Math. Stat., Vol. 7 (1936), pp. 20–43.

    Article  Google Scholar 

  12. M.G. Kendall, “A new measure of rank correlation,” Biometrika, Vol. 30 (1938), pp. 81–93.

    MathSciNet  MATH  Google Scholar 

  13. M.G. Kendall, “Partial rank correlation,” Biometrika, Vol. 32 (1942), pp. 277–283.

    MathSciNet  MATH  Google Scholar 

  14. M.G. Kendall, S.F.H. Kendall, and B. Babington Smith, “The distribution of Spearman’s coefficient of rank correlation in a universe in which all rankings occur an equal number of times,” Biometrika, Vol. 30 (1939), pp. 251–273.

    MATH  Google Scholar 

  15. J.W._Lindeberg, “Über die Korrelation,” VI Skand. Matematikerkongres i Kθbenhavn, 1925, pp. 437–446.

    Google Scholar 

  16. J.W. Lindeberg, “Some remarks on the mean error of the percentage of correlation,” Nordic Statistical Journal, Vol. 1 (1929), pp. 137–141.

    Google Scholar 

  17. H.B. Mann, “Nonparametric tests against trend,” Econometrica, Vol. 13 (1945), pp. 245–259.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. v. Mises, “On the asymptotic distribution of differentiable statistical functions,” Annals of Math. Stat., Vol. 18 (1947), pp. 309–348.

    Article  MATH  Google Scholar 

  19. U.S. Nair, “The standard error of Gini’s mean difference,” Biometrika, Vol. 28 (1936), 428–436.

    MATH  Google Scholar 

  20. K. Pearson, “On further methods of determining correlation,” Drapers’ Company Research Memoirs, Biometric Series, IV, London, 1907.

    Google Scholar 

  21. V. Volterra, Theory of Functionals, Blackie, (authorized translation by Miss M. Long), London and Glasgow, 1931.

    Google Scholar 

  22. G.U. Yule and M.G. Kendall, An Introduction to the Theory of Statistics, Griffin, 11th Edition, London, 1937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoeffding, W. (1992). A Class of Statistics with Asymptotically Normal Distribution. In: Kotz, S., Johnson, N.L. (eds) Breakthroughs in Statistics. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0919-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0919-5_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94037-3

  • Online ISBN: 978-1-4612-0919-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics