Skip to main content

Optimum Experimental Designs

  • Chapter
Breakthroughs in Statistics

Part of the book series: Springer Series in Statistics ((PSS))

Summary

After some introductory remarks, we discuss certain basic considerations such as the nonoptimality of the classical symmetric (balanced) designs for hypothesis testing, the optimality of designs invariant under an appropriate group of transformations, etc. In section 3 we discuss complete classes of designs, while in section 4 we consider methods for verifying that designs satisfy certain specific optimality criteria, or for computing designs which satisfy such criteria. Some of the results are new, while part of the paper reviews pertinent results of the author and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achiezer, M. I. (1956), Theory of Approximation. New York: Ungar.

    Google Scholar 

  • Black well, D. (1950), “Comparison of experiments”, Proc. Second Berkeley Symposium, 93-102, Univ. of California Press.

    Google Scholar 

  • Blum, J. (1954), “Multidimensional stochastic approximation methods”, Ann. Math. Statist., 25, 737–744.

    Article  MATH  Google Scholar 

  • Box, G. E. P. & Wilson, K. B. (1951), “On the experimental attainment of optimum conditions”, J. R. Statist. Soc. B, 13, 1–45.

    MathSciNet  MATH  Google Scholar 

  • Box, G. E. P. (1952), “Multi-factor designs of first order”, Biometrika, 39, 49–57.

    MATH  Google Scholar 

  • Bradt, R. N., Johnson, S. M. & Karlin, S. (1957), “On sequential designs for maximizing the sum of n observations”, Ann. Math. Statist., 28, 1,060–1,074.

    MathSciNet  Google Scholar 

  • Johnson, S. M. & Karlin, S. — & Karlin, S. (1957), “On the design and comparison of certain dichotomous experiments“, Ann. Math. Statist., 28, 390–409.

    MathSciNet  Google Scholar 

  • Chernoff, H. (1953), “Locally optimum designs for estimating parameters”, Ann. Math. Statist., 24, 586–602.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. R. (1952), “Some recent work on systematic experimental designs”, J. R. Statist. Soc.B, 14, 211–219.

    MATH  Google Scholar 

  • Chung, K. L. (1954), “On a stochastic approximation method”, Ann. Math. Statist., 25, 463–483.

    Article  MATH  Google Scholar 

  • De la Garza, A. (1954), “Spacing of information in polynomial regression”, Ann. Math. Statist., 25, 123–130.

    Article  MATH  Google Scholar 

  • Ehrenfeld, S. (1955a), “On the efficiency of experimental designs”, Ann. Math. Statist., 26, 247–255.

    Article  MathSciNet  MATH  Google Scholar 

  • — (1955b), “Complete class theorems in experimental design”, Proc. Third Berkeley Symposium, vol. 1, 57–67. Univ. of California Press.

    Google Scholar 

  • Elfving, G. (1952), “Optimum allocation in linear regression theory”, Ann. Math. Statist., 23, 255–262.

    Article  MathSciNet  MATH  Google Scholar 

  • — (1955a), “Geometric allocation theory”, Skand. Akt., 37, 170–190.

    MathSciNet  Google Scholar 

  • — (1955b), “Selection of nonrepeatable observations for estimation”, Proc. Third Berkeley Symposium, vol. 1, 69–75. Univ. of California Press.

    Google Scholar 

  • Friedman, M. & Savage, L. J. (1947), “Experimental determination of the maximum of a function”, Selected Techniques of Statistical Analysis, 363–372. New York: McGraw-Hill

    Google Scholar 

  • Guest, P. G. (1958), “The spacing of observations in polynomial regression“, Ann. Math. Statist., 29, 294–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Hartley, H. O. & Smith, C. A. B. (1948), “The construction of Youden squares”, J. R. Statist. Soc. B, 10, 262–263.

    MathSciNet  Google Scholar 

  • Hodges, J. L., Jr. & Lehmann, E. L. (1950), “Some problems in minimax point estimation”, Ann. Math. Statist., 21, 182–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann, E. L. — (1955), “Two approximations to the Robbins-Monro process”, Proc. Third Berkeley Symposium, vol. 1, 95–104. Univ. of California Press.

    Google Scholar 

  • Hoel, P. G. (1958), “Efficiency problems in polynomial estimation”, Ann. Math. Statist., 29, 1,134–1,145.

    Article  MathSciNet  MATH  Google Scholar 

  • Hotelling, H. (1941), “Experimental determination of the maximum of a function”, Ann. Math. Statist., 12, 20–46.

    Article  MathSciNet  MATH  Google Scholar 

  • — (1944), “Some improvements in weighing and other experimental techniques”, Ann. Math. Statist., 15, 297–306.

    Article  MathSciNet  MATH  Google Scholar 

  • Hsu, P. L. (1941), “Analysis of variance from the power function standpoint”, Biometrika, 32, 62.

    Article  MathSciNet  MATH  Google Scholar 

  • Isaacson, S. (1951), “On the theory of unbiased tests of simple statistical hypotheses specifying the values of two or more parameters”, Ann. Math. Statist., 22, 217–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin, S. & Shapley, L. S. (1953), Geometry of Moment Spaces, vol. 12 of Amer. Math. Soc. Memoirs.

    Google Scholar 

  • Kiefer, J. (1948), “Sequential determination of the maximum of a function”, M.I.T. (thesis).

    Google Scholar 

  • — (1953), “Sequential minimax search for a maximum”, Proc. Amer. Math. Soc., 4, 502–506.

    Article  MathSciNet  Google Scholar 

  • — (1957a), “Invariance, sequential minimax estimation, and continuous time processes”, Ann. Math. Statist., 28, 573–601.

    Article  MathSciNet  Google Scholar 

  • — (1957b), “Optimum sequential search and approximation methods under minimum regularity conditions”, J. Soc. Ind. Appl. Math., 5, 105–136.

    Article  Google Scholar 

  • — (1958), “On the nonrandomized optimality and randomized nonoptimality of symmetrical designs”, Ann Math. Statist, 29, 675–699. (Referred to in the present paper as I.)

    Article  MathSciNet  Google Scholar 

  • — & Wolfowitz, J. (1952), “Stochastic estimation of the maximum of a regression function”, Ann. Math. Statist., 23, 462–466.

    Article  Google Scholar 

  • — (1959), “Optimum designs in regression problems”, Ann. Math. Statist., 30. (Referred to in the present paper as II.)

    Google Scholar 

  • Kshirsagar, A. M. (1958), “A note on incomplete block designs”, Ann. Math. Statist., 29, 907–910.

    Article  MathSciNet  MATH  Google Scholar 

  • Le Cam, L. (1955), “An extension of Wald’s theory of statistical decision functions”, Ann. Math. Statist., 26, 69–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Mood, A. (1946), “On Hotelling’s weighing problem”, Ann. Math. Statist., 17, 432–446.

    Article  MathSciNet  MATH  Google Scholar 

  • Mote, V. L. (1958), “On a minimax property of a balanced incomplete block design”, Ann. Math. Statist., 29, 910–913.

    Article  MathSciNet  MATH  Google Scholar 

  • Neyman, J. & Pearson, E. S. (1938), “Contributions to the theory of testing statistical hypotheses, III”, Stat. Res. Memoirs, 2, 25–27.

    Google Scholar 

  • Plackett, R. L. (1946), “Some generalizations in the multifactorial design”, Biometrika, 33, 328–332.

    Article  MathSciNet  MATH  Google Scholar 

  • — & Burman, J. P. (1946), “The design of optimum multifactorial experiments”, Biometrika, 33, 296–325.

    Article  MathSciNet  Google Scholar 

  • Robbins, H. (1952), “Some aspects of the sequential design of experiments”, Bull. Amer. Math. Soc., 58, 527–535.

    Article  MathSciNet  MATH  Google Scholar 

  • — & Monro, S. (1951), “A stochastic approximation method”, Ann. Math. Statist., 22, 400–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Sacks, J. (1958), “Asymptotic distribution of stochastic approximation procedures”, Ann. Math. Statist, 29, 373–405.

    Article  MathSciNet  MATH  Google Scholar 

  • Scheffé H. (1958), “Experiments with mixtures“, J. R. Statist Soc.B, 20, 344–360.

    MATH  Google Scholar 

  • Shohat, J. A. & Tamarkin, J. D. (1943), The Problem of Moments, Amer. Math. Soc. Surveys, No. 1.

    Google Scholar 

  • Smith, K. (1918), “On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of observations“, Biometrika, 12, 1–85.

    Google Scholar 

  • Sobel, M. & Groll, P. A. (1959), “On group testing with a finite population”, (To be published.)

    Google Scholar 

  • Stein, C. (1948), “On sequences of experiments” (abstract), Ann. Math. Stat., 19, 117–118.

    Google Scholar 

  • — (1955), “Inadmissibility of the usual estimator for the mean of a multivariate normal distribution”, Proc. Third Berkeley Symposium, vol. 1, 197–206. Univ. of California Press.

    Google Scholar 

  • — & Wald, A. (1947), “Sequential confidence intervals for the mean of a normal distribution with known variance”, Ann. Math. Statist., 18, 427–433.

    Article  MathSciNet  MATH  Google Scholar 

  • Tocher, K. D. (1952), “The design and analysis of block experiments”, J. R. Statist Soc. B, 14, 45–100.

    MathSciNet  MATH  Google Scholar 

  • Wald, A. (1942), “On the power function of the analysis of variance test”, Ann. Math. Statist, 13, 434–439.

    Article  MathSciNet  MATH  Google Scholar 

  • — (1943), “On the efficient design of statistical investigations”, Ann. Math. Statist, 14, 134–140.

    Article  MathSciNet  MATH  Google Scholar 

  • — (1950), Statistical Decision Functions, New York: John Wiley.

    MATH  Google Scholar 

  • — & Wolfowitz, J. (1948), “Optimum character of the sequential probability ratio test”, Ann. Math. Statist, 19, 326–339.

    Article  MathSciNet  MATH  Google Scholar 

  • — (1950), “Characterization of the minimal complete class of decision functions when the number of distributions and decisions is finite”, Proc. Second Berkeley Symposium, 149–157. Univ. of California Press.

    Google Scholar 

  • Wolfowitz, J. (1949), “The power of the classical tests associated with the normal distribution”, Ann. Math. Statist., 20, 540–551.

    Article  MathSciNet  MATH  Google Scholar 

  • — (1950), “Minimax estimates of the mean of a normal distribution with known variance”, Ann. Math. Statist., 21, 218–230.

    Article  MathSciNet  MATH  Google Scholar 

  • — (1951), “On ε-complete classes of decision functions”, Ann. Math. Statist., 22, 461–465.

    Article  MathSciNet  MATH  Google Scholar 

  • Yates, F. (1935), “Complex experiments”, J. R. Statist. Soc. Sup., 2, 181–247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kiefer, J.C. (1992). Optimum Experimental Designs. In: Kotz, S., Johnson, N.L. (eds) Breakthroughs in Statistics. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0919-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0919-5_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94037-3

  • Online ISBN: 978-1-4612-0919-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics