Skip to main content

The Aging Brain and Neurodegenerative Disorders

  • Chapter
Neuroimaging

Abstract

Both the aging brain and neurodegenerative disorders are characterized by a lack of longevity of affected neurons resulting in their death.1 Neuronal shrinkage or atrophy and death are both normal and inevitable aspects of “successful” aging. This is distinct from the unexpected, excessive, and premature, in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams RD, Victor M. Principles of Neurology, 4th ed. McGraw-Hill Information Services Company, Health Professions Division, New York, 1989, pp. 35–77, 334–346, 488–500, 921–967.

    Google Scholar 

  2. Barkovich AJ, Kjos BO, Jackson DE. Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 1988; 166: 173–180.

    PubMed  CAS  Google Scholar 

  3. Sze G, De Armond SJ, Brant-Zawadski M, et al. Foci of MRI signal (pseudolesions) anterior to the frontal horns: Histologic correlations of a normal finding. AJNR 1986; 7: 381–387.

    Google Scholar 

  4. Mirowitz S, Sartor K, Gado MG, et al. Focal signal-intensity variations in the posterior internal capsule: Normal MR findings and distinction from pathologic findings. Radiology 1989; 172: 535–539.

    PubMed  CAS  Google Scholar 

  5. Yagishita A, Nakano I, Oda M, Hirano A. Location of the corticospinal tract in the internal capsule at MR imaging. Radiology 1994; 191: 455–460.

    PubMed  CAS  Google Scholar 

  6. Drayer BP, Burger P, Darwin R, Riederer S, Herfkens R, Johnson GS. Magnetic resonance imaging of brain iron. AJNR 1986; 7: 373–380.

    Google Scholar 

  7. Rutledge JN, Hilal SK, Silver AJ, Defendini R, Fahn S. Study of movement disorders and brain iron by MR. AJNR 1987; 8: 397–410.

    Google Scholar 

  8. Braffman BH, Zimmerman RA, Trojanowski JQ, et al. Brain MR: Pathologic correlation with gross and histopathology. 1. Lacunar infarction and Virchow-Robin spaces. AJNR 1988; 9: 621–628.

    Google Scholar 

  9. Jungreis CA, Kanal E, Hirsch WL, et al. Normal perivascular spaces mimicking lacunar infarction: MR imaging. Radiology 1988; 169: 101–104.

    PubMed  CAS  Google Scholar 

  10. Heier LA, Bauer CJ, Schwartz, et al. Large Virchow-Robin spaces: MR-clinical correlation. AJNR 1989; 10: 929–936.

    PubMed  CAS  Google Scholar 

  11. Elster AD, Richardson DN. Focal high signal on MR scans of the midbrain caused by enlarged perivascular spaces: MR-pathologic correlation. AJNR 1990; 11: 1119–1122.

    Google Scholar 

  12. Zimmerman RD, Fleming CA, Lee BCP. Periventricular hyperintensity as seen by magnetic resonance: Prevalence and significance. AJNR 1986; 7: 13–20.

    Google Scholar 

  13. Bowen BC, Barker WW, Loewenstein DA, et al. MR signal abnormalities in memory disorder and dementia. AJNR 1990; 11: 283–290.

    PubMed  CAS  Google Scholar 

  14. Bradley WG, Waluch V, Brant-Zawadzki M, et al. Patchy periventricular white matter lesions in the elderly: common observation during NMR imaging. Noninvas Med Imaging 1984; 1: 35–41.

    Google Scholar 

  15. Brant-Zawadzki M, Fein G, Dyke CV. MR imaging of the aging brain: Patchy white-matter lesions and dementia. AJNR 1985; 6: 675–682.

    PubMed  CAS  Google Scholar 

  16. Awad IA, Spetzler RF, Hodak JA, et al. Incidental sub-cortical lesions identified on magnetic resonance imaging in the elderly. I. Correlation with age and cerebrovascular risk factors. Stroke 1986; 17 (6): 1084–1089.

    PubMed  CAS  Google Scholar 

  17. Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJNR 1987; 8: 421–426.

    Google Scholar 

  18. Hendrie HC, Farlow MR, Austrom MG, et al. Foci of increased T2 signal intensity on brain MR scans of healthy elderly subjects. AJNR 1989; 10: 703–707.

    PubMed  CAS  Google Scholar 

  19. Kobari M, Meyer JS, Ichijo M, et al. Leukoaraiosis: Correlation of MR and CT findings with blood flow, atrophy, and cognition. AJNR 1990; 11: 273–281.

    PubMed  CAS  Google Scholar 

  20. Gerard G, Weisberg LA. MR periventricular lesions in adults. Neurology 1986; 36: 998–1001.

    PubMed  CAS  Google Scholar 

  21. Fazekas F, Niederkorn K, Schmidt R, et al. White matter signal abnormalities in normal individuals: Correlation with carotid ultrasonography, cerebral blood flow measurements, and cerebrovascular risk factors. Stroke 1988; 19: 1285–1288.

    PubMed  CAS  Google Scholar 

  22. Heier LA, Barbut DR, Deck MDF. MR clinical correlation of transient ischemic attacks. AJNR 1989; 10: 872 (a).

    Google Scholar 

  23. Awad IA, Johnson PC, Spetzler RF, Hodak JA. Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. II. Postmortem pathologic correlations. Stroke 1986; 17 (6): 1090–1097.

    PubMed  CAS  Google Scholar 

  24. Brun A, Englund E. A white matter disorder in dementia of the Alzheimer type: A pathoanatomical study. Ann Neurol 1986; 19: 253–262.

    CAS  Google Scholar 

  25. Brun A, Gustafson L, Englund E. Subcortical pathology of Alzheimer’s disease. Adv Neurol 1990; 51: 73–77.

    PubMed  CAS  Google Scholar 

  26. Kirkpatrick JB, Hayman LA. White-matter lesions of clinically healthy brains of elderly subjects: possible pathologic basis. Radiology 1987; 162: 509–511.

    PubMed  CAS  Google Scholar 

  27. Marshall VG, Bradley WG Jr, Marshall CE, et al. Deep white matter infarction: Correlation of MR imaging and histopathologic findings. Radiology 1988; 167: 517–522.

    PubMed  CAS  Google Scholar 

  28. Braffman BH, Zimmerman RA, Trojanowski JQ, et al. Brain MR: Pathologic correlation with gross and histopathology. 2. Hyperintense white-matter foci in the elderly. AJNR 1988; 9: 629–636.

    Google Scholar 

  29. Fazekas F, Kleinert R, Offenbacher H, et al. The morphologic correlate of incidental punctate white matter hyperintensities on MR images. AJNR 1991; 12: 915–921.

    PubMed  CAS  Google Scholar 

  30. Moody DM, Bell MA, Challa VR. The corpus callosum, a unique white-matter tract: Anatomic features that may explain sparing in Binswanger disease and resistance to flow of fluid masses. AJNR 1988; 9: 1051–1059.

    PubMed  CAS  Google Scholar 

  31. Burger PC, Burch JG, Kunze U. Subcortical arteriosclerotic encephalopathy ( Binswanger’s disease ): A vascular etiology of dementia. Stroke 1976: 626–631.

    Google Scholar 

  32. Salomon A, Teates AE, Burger PC, et al. Subcortical arteriosclerotic encephalopathy: Brain stem findings with MR imaging. Radiology 1987; 165: 625–629.

    PubMed  CAS  Google Scholar 

  33. Moody DM, Bell MA, Challa VR. Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: An anatomic study. AJNR 1990; 11: 431–439.

    PubMed  CAS  Google Scholar 

  34. Aoki S, Okada Y, Nishimura K, et al. Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology 1989; 172: 381–385.

    PubMed  CAS  Google Scholar 

  35. Milton WJ, Atlas SW, Lexa FJ, Mozley EP, Gur RE. Deep gray matter hypointensity patterns with aging in healthy adults: MR imaging at 1.5 T. Radiology 1991; 181: 715–719.

    PubMed  CAS  Google Scholar 

  36. Drayer BP, Olanow W, Burger P, et al. Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 1986; 159: 493–498.

    PubMed  CAS  Google Scholar 

  37. Drayer BP, Burger P, Hurwitz B, Dawson D, Cain J. Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJNR 1987; 8: 413–419.

    Google Scholar 

  38. Penner MW, Li KC,Gebarski SS, Allen RJ. MR imaging of Pelizaeus-Merzbacher disease. J Comput Assist Tomog 1987; 11 (4): 591–593.

    CAS  Google Scholar 

  39. Dietrich RB, Bradley WG. Iron accumulation in the basal ganglia following severe ischemic-anoxic insults in children. Radiology 1988; 168: 203–206.

    PubMed  CAS  Google Scholar 

  40. Cross PA, Atlas SW, Grossman RI. MR evaluation of brain iron in children with cerebral infarction. AJNR 1990; 11: 341–348.

    PubMed  CAS  Google Scholar 

  41. Wagle WA, Smith TW, Weiner M. Intracerebral hemorrhage caused by cerebral amyloid angiopathy: Radiographic-pathologic correlation. AJNR 1984; 5: 171–176.

    CAS  Google Scholar 

  42. Ishii N, Nishihara Y, Horie A. Amyloid angiopathy and lobar cerebral haemorrhage. J Neurol Neurosurg Psychiatry 1984; 47: 214: 195–206.

    Google Scholar 

  43. Patel DV, Hier DB, Thomas CM, et al. Intracerebral hemorrhage secondary to cerebral amyloid angiopathy. Radiology 1984; 151: 397–400.

    PubMed  CAS  Google Scholar 

  44. Schoene WC. Degenerative disease of the central nervous system. In: Davis RL, Robertson DM, eds. Textbook of Neuropathology. Baltimore: Williams & Wilkins; 1985, pp. 788–823.

    Google Scholar 

  45. Savoiardo M, Strada L, Girotti F, et al. MR imaging in progressive supranuclear palsy and Shy-Drager syndrome. J Comput Assist Tomogr 1989; 13: 555–560.

    PubMed  CAS  Google Scholar 

  46. Arai H, Kobayashi K, Ikeda K, et al. A computed tomography study of Alzheimer’s disease. J Neurol 1983; 229: 69–77.

    PubMed  CAS  Google Scholar 

  47. Creasey H, Schwartz M, Fredrickson H, et al. Quantitative computed tomography in dementia of the Alzheimer type. Neurology 1986; 36: 1563–1568.

    PubMed  CAS  Google Scholar 

  48. de Leon MJ, George AE, Reisberg B, et al. Alzheimer’s disease: longitudinal CT studies of ventricular change. AJNR 1989; 10: 371–376.

    Google Scholar 

  49. Gado M, Patel J, Hughes CP, et al. Brain atrophy in dementia judged by CT scan ranking. AJNR 1983; 4: 499–500.

    PubMed  CAS  Google Scholar 

  50. Gado M, Hughes CP, Danziger W, et al. Aging, dementia, and brain atrophy: A longitudinal computed tomographic study. AJNR 1983; 4: 699–702.

    PubMed  CAS  Google Scholar 

  51. Kido DK, Caine ED, LeMay M, et al. Temporal lobe atrophy in patients with Alzheimer disease: A CT study. AJNR 1989; 10: 551–555.

    PubMed  CAS  Google Scholar 

  52. Johnson KA, Davis KR, Buonanno FS, et al. Comparison of magnetic resonance and roentgen ray computed tomography in dementia. Arch Neurol 1987; 44: 1075–1080.

    PubMed  CAS  Google Scholar 

  53. Le May M, Stafford JL, Sandor T, et al. Statistical assessment of perceptual CT scan ratings in patients with alzheimer type dementia. J Comput Assist Tomogr 1986; 10 (5): 802–809.

    Google Scholar 

  54. Le May M. CT changes in dementing diseases: A review. AJNR 1986; 7: 841–853.

    Google Scholar 

  55. Terry RD. Alzheimer’s disease. In: Davis RL, Robertson DM, eds. Textbook of Neuropathology. Baltimore: Williams & Wilkins; 1985, pp. 824–841.

    Google Scholar 

  56. Hyman BT, Van Hoesen GW, Damasio AR, et al. Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 1984; 225: 1168–1170.

    PubMed  CAS  Google Scholar 

  57. Drayer BP. Imaging of the aging brain Part II. Pathologic conditions. Radiology 1988; 166: 797–806.

    PubMed  CAS  Google Scholar 

  58. Jack CR, Petersen RC, O’Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992; 42: 183–188.

    PubMed  Google Scholar 

  59. George AE,, de Leon MJ, Gentes CI et al. Leukoencephalopathy in normal and pathologic aging: 1. CT of brain lucencies. AJNR 1986; 7: 561–566.

    PubMed  CAS  Google Scholar 

  60. George AE,, de Leon MJ, Kalnin A et al. Leukoencephalopathy in normal and pathologic aging: 1. MR of brain lucencies. AJNR 1986; 7: 567–570.

    PubMed  CAS  Google Scholar 

  61. Rezek DL, Morris JC, Fulling KH, et al. Periventricular white matter lucencies in senile dementia of the Alzheimer type and in normal aging. Neurology 1987; 37: 1365–1368.

    PubMed  CAS  Google Scholar 

  62. Erkinjuntti T, Ketonen L, Sulkava R, et al. Do white matter changes on MRI and CT differentiate vascular dementia from Alzheimer’s disease? J Neurol Neurosurg Psychiatry 1987; 50: 37–42.

    PubMed  CAS  Google Scholar 

  63. Jack CR, Mokri B, Laws ER, Houser OW, Baker HL, Petersen RC. MR findings in normal pressure hydrocephalus: significance and comparison with other forms of dementia. Comput Assist Tomogr 1987; 11 (6): 923–931.

    Google Scholar 

  64. Lotz PR, Ballinger WE, Quisling RG. Subcortical arteriosclerotic encephalopathy: CT spectrum and pathologic correlation. AJNR 1986; 7: 817–822.

    Google Scholar 

  65. Drayer BP. Microangiopathic leukoencephalopathy: MR imaging. Presented at the Categorical Course on Cerebrovascular Disease at the Twenty-Seventh Annual Meeting of the American Society of Neuroradiology, Orlando, March 18–19, 1989.

    Google Scholar 

  66. Rao CVG Krishna, Brennan TG, Garcia JH. Computed tomography in the diagnosis of Creutzfeldt-Jacob disease. J Comput Assist Tomogr 1977; 1 (2): 211–215.

    PubMed  CAS  Google Scholar 

  67. Tomonaga M, Yamanouchi H, Toghi H, et al. Clinicopathologic study of progressive vascular encephalopathy (Binswanger type) in the elderly. J Am Geriatr Soc, 1982; 30 (8): 524–529.

    PubMed  CAS  Google Scholar 

  68. Erkinjuntti T, Sipponen JT, Iivanainen M, et al. Cerebral NMR and CT imaging in dementia. J Comput Assist Tomogr 1984;8(4):614–618.80.

    Google Scholar 

  69. Wechsler AF, Verity MA, Rosenschein S, et al. Pick’s disease: a clinical, computed tomographic, and histologic study with golgi impregnation observations. Arch Neurol 1982; 39: 287–290.

    PubMed  CAS  Google Scholar 

  70. Groen JJ, Hekster REM. Computed tomography in Pick’s disease: Findings in a family affected in three consecutive generations. J Comput Assist Tomogr 1982; 6 (5): 907–911.

    PubMed  CAS  Google Scholar 

  71. Braffman BH, Trojanowski JQ, Atlas SW. The aging brain, neurodegenerative disorders, and related disease. In: Atlas SW ed. MR Imaging of the Brain and Spine. New York: Raven Press; 1990: 567–624.

    Google Scholar 

  72. Kricheff II. Arteriosclerotic ischemic cerebrovascular disease. Radiology 1987; 162: 101–109.

    PubMed  CAS  Google Scholar 

  73. Liston EH, La Rue A. Clinical differentiation of primary degenerative and multi-infarct dementia: A critical review of the evidence Part II: pathologic studies. Biological Psychiatry 1983; 18 (12): 1467–1484.

    PubMed  CAS  Google Scholar 

  74. Scheinberg P. Dementia due to vascular disease: A multifactorial disorder. Stroke 1988; 19: 1290–1299.

    Google Scholar 

  75. Hershey LA, Modic MT, Greenough G, et al. Magnetic resonance imaging in vascular dementia. Neurology 1987; 37: 29–1336.

    PubMed  CAS  Google Scholar 

  76. Sypert GW, Leffman H, Ojemann GA. Occult normal pressure hydrocephalus manifested by parkinsonismdementia complex. Neurology 1973; 23: 234–238.

    PubMed  CAS  Google Scholar 

  77. Fisher CM. Hydrocephalus as a cause of disturbances of gait in the elderly. Neurology 1982; 32: 1358–1363.

    PubMed  CAS  Google Scholar 

  78. Rasker JJ, Jansen ENH, Haan J, Oostrom J. Normal pressure hydrocephalus in rheumatic patients. NEJM 1985; 312 (19): 1239–1241.

    PubMed  CAS  Google Scholar 

  79. Huckman MS. Normal pressure hydrocephalus: Evaluation of diagnostic and prognostic tests. AJNR 1981; 2: 385–395.

    PubMed  CAS  Google Scholar 

  80. Bamford CR, Labadie EL. Reversal of dementia in normotensive hydrocephalus after removal of a cauda equina tumor. J Neurosurg 1976; 45: 104–107.

    PubMed  CAS  Google Scholar 

  81. El Gammal T, Allen MB, Brooks BS, Mark EK. MR evaluation of hydrocephalus. AJNR 1987; 8: 591–597.

    Google Scholar 

  82. Wikkelso C, Andersson H, Blomstrand C, Matousek M, Svendsen P. Computed tomography of the brain in the diagnosis and prognosis in normal pressure hydrocephalus. Neuroradiology 1989; 31: 160–165.

    PubMed  CAS  Google Scholar 

  83. Malko JA, Hoffman JC Jr, McClees EC, Davis PC, Braun IF. A phantom study of intracranial CSF signal loss due to pulsatile motion. AJNR 1988; 9: 83–89.

    PubMed  CAS  Google Scholar 

  84. Bradley WG, Whittemore AR, Watanabe AS, Davis SJ, Teresi LM, Homyak M. Association of deep white matter infarction with chronic communicating hydrocephalus: Implications regarding possible origin of NPH. AJNR 1991; 12: 31–39.

    PubMed  Google Scholar 

  85. Case records of the Massachusetts General Hospital. Case 45–1980. N Engl J Med 1980; 303 (20): 1162–1171.

    Google Scholar 

  86. Kovanen J, Erkinjuntti T, Livanainen M, et al. Cerebral MR and CT imaging in Creutzfeldt-Jacob disease. J Comput Assist Tomogr 1985;(9)1:125–128.

    Google Scholar 

  87. Pearl GS, Anderson RE. Creutzfeldt-Jakob disease: High caudate signal on magnetic resonance imaging. South Med J 1989; 82: 1177–1180.

    PubMed  CAS  Google Scholar 

  88. Gertz HJ, Henkes H, Cervos-Navarro J. CreutzfeldtJakob disease: correlation of MRI and neuropathologic findings. Neurology 1988; 38: 1481–1482.

    PubMed  CAS  Google Scholar 

  89. Finkenstaedt M, Szudra A, Zerr I, et al. MR imaging of Creutzfeldt-Jakob disease. Radiology 1996; 199: 793798.

    Google Scholar 

  90. Park TS, Kleinman GM, Richardson EP. CreutzfeldtJakob disease with extensive degeneration of white matter. Acta Neuropathol (Berl) 1980; 52: 239–242.

    CAS  Google Scholar 

  91. Nieuwenhuys R, Voogd J, van Huijzen C. The Human Central Nervous System. A Synopsis and Atlas. New York: Springer-Verlag; 1981: 41.

    Google Scholar 

  92. Kanazawa I. Clinical pathophysiology of basal ganglia disease. In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology. New York: Elsevier Science Publishing Co., 1986, pp. 49: 65–86.

    Google Scholar 

  93. Simmons JT, Pastakia B, Chase TN, et al. Magnetic resonance imaging in Huntington disease. AJNR 1986; 7: 25–28.

    PubMed  CAS  Google Scholar 

  94. Drayer BP. Magnetic resonance imaging and brain iron: Implications in the diagnosis and pathochemistry of movement disorders and dementia. BNI Quarterly 1987; 3 (4): 15–30.

    Google Scholar 

  95. Hallervorden J. Handbuch der speziellen pathologischen Anatomie and Histologie. Berlin: Springer-Verlag, 1957: 793.

    Google Scholar 

  96. Klintworth GK. Huntington’s chorea: morphologic contributions of a century. In: Barbeau A, Chase TN, Paulson GW, eds. Advances in Neurology, Vol 1. New York: Raven; 1973, pp. 353–368.

    Google Scholar 

  97. Barkovich AJ. Metabolic and destructive brain disorders. In: Barkovich AJ, ed. Contemporary Neuroimaging, Vol. 1: Pediatric Neuroimaging. New York: Raven Press, 1990, pp. 35–75.

    Google Scholar 

  98. Gallucci M, Cardona F, Arachi M, Splendiani A, Bozzao A, Passariello R. Follow-up MR studies in Hallervorden-Spatz disease. J Comput Assist Tomogr 1990; 14: 118–120.

    PubMed  CAS  Google Scholar 

  99. Mutoh K, Okuno T, Ito M, et al. MR imaging of a group I case of Hallervorden-Spatz disease. J Comput Assist Tomogr 1988; 12: 851–853.

    PubMed  CAS  Google Scholar 

  100. Seitelberger F. Neuroaxonal dystrophy: its relation to aging and neurological diseases. In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology. New York: Elsevier Science Publishing Co.; 1986, pp. 49: 391–415.

    Google Scholar 

  101. Feliciani M, Curatolo P. Early clinical and imaging (high-field MRI) diagnosis of Hallervorden-Spatz disease. Neuroradiology 1994; 36: 247–248.

    PubMed  CAS  Google Scholar 

  102. Dooling EC, Schoene WC, Richardson EP, Hallervorden-Spatz syndrome. Arch Neurol 1974; 30: 70–83.

    PubMed  CAS  Google Scholar 

  103. Littrup PJ, Gerbarski SS. MR imaging of HallervordenSpatz disease. J Comput Assist Tomogr 1985; 9 (3): 491–493.

    PubMed  CAS  Google Scholar 

  104. Schaffert DA, Johnsen SD, Johnson PC, et al. Magnetic resonance imaging in pathologically proven Hallervorden-Spatz disease. Neurology 1898; 39: 440–442.

    Google Scholar 

  105. Tanfani G, Mascalchi M, Dal Pozzo GC, et al. MR imaging in a case of Hallervorden-Spatz disease. J Comput Assist Tomogr 1987; 11 (6): 1057–1058.

    PubMed  CAS  Google Scholar 

  106. Sethi KD, Adams RJ, Loring DW, et al. HallervordenSpatz syndrome: Clinical and magnetic resonance imaging correlations. Ann Neurol 1988; 24: 692–694.

    PubMed  CAS  Google Scholar 

  107. Medina L, Chi TL, DeVivo DC, Hilal SK. MR findings in patients with subacute necrotizing encephalomyelopathy (Leigh syndrome): Correlation with biochemical defect. AJNR 1990; 11: 379–384.

    CAS  Google Scholar 

  108. Geyer CA, Sartor KJ, Prensky AJ, Abramson CL, Hodges FJ, Gado MH. Leigh disease (subacute necrotizing encephalomyelopathy): CT and MR in five cases. J Comput Assist Tomogr 1988; 12: 40–44.

    PubMed  CAS  Google Scholar 

  109. Fulham M, Lawrence C, Harper C. Diagnostic clues in an adult case of Leigh’s disease. Med J Aust 1988; 149: 320–322.

    PubMed  CAS  Google Scholar 

  110. Davis PC, Hoffman JC Jr, Braun IF, Ahmann P, Krawiecki N. MR of Leigh’s disease (subacute necrotizing encephalomyelopathy). AJNR 1987; 8: 71–75.

    PubMed  CAS  Google Scholar 

  111. Montpetit VJA, Anderman F, Carpenter S, Fawcett JS, Zborowska-Sluis D, Gillberson HR. Subacute necrotizing encephalomyelopathy. Brain 1971; 94: 1–30.

    PubMed  CAS  Google Scholar 

  112. Martin JJ, Van de Vyver FL, Scholte HR, et al. Defect in succinate oxidation by isolated muscle mitochondria in a patient with symmetrical lesions in the basal ganglia. J Neurol Sci 1988; 84: 189–200.

    PubMed  CAS  Google Scholar 

  113. Van Erven PM, Reiner WO, Gabreels FJ, et al. Hypokinesia and rigidity as clinical manifestations of mitochondrial encephalomyelopathy: Report of three cases. Dev Med Child Neurol 1989; 31: 81–91.

    PubMed  Google Scholar 

  114. Koch TK, Yee MHC, Hutchinson HT, Berg BO. Magnetic resonance imaging in subacute necrotizing encephalomyelopathy (Leigh’s disease). Ann Neurol 1986; 19: 605–607.

    PubMed  CAS  Google Scholar 

  115. Kissel JT, Kolkin S, Chakeres D, Boesel C, Weiss K. Magnetic resonance imaging in a case of autopsy-proved adult subacute necrotizing encephalomyelopathy (Leigh’s disease). Arch Neurol 1987; 44: 563–566.

    PubMed  CAS  Google Scholar 

  116. Onuma A, Miyabayashi S, Linuma K, et al. Comparative appraisal of CT scan and MRI in the diagnosis of Leigh encephalomyelopathy in two siblings. J Child Neurol 1987; 2: 324–326.

    PubMed  CAS  Google Scholar 

  117. Egger J, Lake BD, Wilson J. Mitochondrial cytopathy. A multisystem disorder with ragged red fibers on muscle biopsy. Arch Dis Child 1981; 56: 741–752.

    PubMed  CAS  Google Scholar 

  118. Allard JC, Tilak S, Carter AP. CT and MR of MELAS syndrome. AJNR 1988; 9: 1234–1238.

    PubMed  CAS  Google Scholar 

  119. Aisen AM, Martel W, Gabrielsen TO, et al. Wilson disease of the brain: MR imaging. Radiology 1985; 157: 137–141.

    PubMed  CAS  Google Scholar 

  120. Yuh WT, Flickinger FW. Unusual MR findings in CNS Wilson disease (letter). AJR 1988; 151: 834.

    PubMed  CAS  Google Scholar 

  121. Wilson SAK. Progressive lenticular degeneration: A familial nervous disease associated with cirrhosis of the liver. Brain 1912; 34: 295–309.

    Google Scholar 

  122. Walshe JM. Wilson’s disease. In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology. New York: Elsevier Science Publishing; 1986, pp. 49: 223–238.

    Google Scholar 

  123. Lennox G, Jones R. Gaze distractibility in Wilson’s disease. Ann Neurol 1989; 25 (4): 415–417.

    PubMed  CAS  Google Scholar 

  124. Lawler GA, Pennock JM, Steiner RE, et al. Nuclear magnetic resonance (NMR) imaging in Wilson disease. J Comput Assist Tomogr 1983; 7 (1): 1–8.

    PubMed  CAS  Google Scholar 

  125. De Haan J, Grossman RI, Civitello L, et al. High-field magnetic resonance imaging of Wilson’s disease. J Comput Tomogr 1987; 11: 132–135.

    PubMed  Google Scholar 

  126. Van Wassenaer Hall HN, Van den Heuvel AG, Algra A, Hoogenraad TU, Mali WPTM. Wilson disease: Findings at MR imaging and CT of the brain with clinical correlation. Radiology 1996; 198: 531–536.

    Google Scholar 

  127. Starosta-Rubinstein S, Young AB, Kluin K, et al. Clinical assessment of 31 patients with Wilson’s disease. Correlations with structural changes on magnetic resonance imaging. Arch Neurol 1984; 44: 365–370.

    Google Scholar 

  128. Salam-Adams M, Adams RD. Acquired hepatocerebral syndromes. In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology. New York: Elsevier Science Publishers; 1986, pp. 49: 213–222.

    Google Scholar 

  129. Hanner JS, Li KCP, Davis GL. Acquired hepatocerebral degeneration: MR similarity with Wilson disease. J Comput Assist Tomogr 1988; 12: 1076–1077.

    PubMed  CAS  Google Scholar 

  130. Gilbert GJ. Acute ammonia intoxication 37 years after ureterosigmoidostomy. South Med J 1988; 81: 1443–1445.

    PubMed  CAS  Google Scholar 

  131. Brunberg JA, Kanal E, Hirsch W, Davis PL, Van Thiel DH. Chronic acquired hepatic failure: MR imaging of the brain. AJNR 1988; 9: 1034–1035.

    Google Scholar 

  132. Barbeau A. Parkinson’s disease: clinical features and etiopathology. In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology. New York: Elsevier Science Publishing Co.; 1986, pp. 49: 87–152.

    Google Scholar 

  133. Duguid JR, De La Paz R, DeGroot J. Magnetic resonance imaging of the midbrain in Parkinson’s disease. Ann Neurol 1986; 20: 744–747.

    PubMed  CAS  Google Scholar 

  134. Braffman BH, Grossman RI, Goldberg HI, et al. MR imaging of Parkinson disease with spin-echo and gradient-echo sequences. AJNR 1988; 9: 1093–1099.

    Google Scholar 

  135. Stern MB, Braffman BH, Skolnick BE, et al. Magnetic resonance imaging in Parkinson’s disease and parkinsonian syndromes. Neurology 1989; 39: 1524–1526.

    PubMed  CAS  Google Scholar 

  136. Savoiardo M, Strada L, Girotti F, et al. Olivopontocerebellar atrophy: MR diagnosis and relationship to multisystem atrophy. Radiology 1990; 174: 693–696.

    PubMed  CAS  Google Scholar 

  137. Adams RD, Salam-Adams M. Striatinigral degeneration. In: Vinken PJ, Bruyn GW, Klawans HL, eds. Handbook of Clinical Neurology. New York: Elsevier Science Publishing Co.; 1986, pp. 49: 205–212.

    Google Scholar 

  138. Brown R, Polinsky RJ, Di Chiro G, et al. MRI in autonomic failure. J Neurol Neurosurg Psychiatry 1987; 50: 913–914.

    PubMed  CAS  Google Scholar 

  139. Kristensen MO. Progressive supranuclear palsy-20 years later. Acta Neurol Scand 1985; 71: 177–189.

    PubMed  CAS  Google Scholar 

  140. Menzel P. Beitrag zur Kenntnis der hereditaren ataxie and Kleinhirnatrophie. Arch Psychiatr Nervenker 189; 22: 160.

    Google Scholar 

  141. Dejerine J, Thomas A. L’atrophie olivo-pontocerebelleuse. Nouv Iconogr Salpet 1900; 13: 330.

    Google Scholar 

  142. Oppenheimer DR. Diseases of the basal ganglia, cerebellum and motor neurons. In: Hume AJ, et al eds. Greenfield’s neuropathology. 4th ed. New York: Wiley; 1984, pp. 699–747.

    Google Scholar 

  143. Nabatame H, Fukuyama H, Akiguchi I, Kameyama M, Nishimura K, Nakano Y. Spinocerebellar degeneration: qualitative and quantitative MR analysis of atrophy. J Comput Assist Tomogr 1988; 12: 298–303.

    PubMed  CAS  Google Scholar 

  144. Baloh RW, Yee RD, Honrubia V. Late cortical cerebellar atrophy. Clinical and oculographic features. Brain 1986; 109: 159–180.

    PubMed  Google Scholar 

  145. Courchesne E, Press GA, Murakami J, et al. The cerebellum in sagittal plane-anatomic-MR correlation: 1. the vermis. AJNR 1989; 10: 659–665.

    Google Scholar 

  146. Barlow JK, Sims KB, Kolodny EH. Early cerebellar degeneration in twins with infantile neuroaxonal dystrophy. Ann Neurol 1989; 25: 413–415.

    PubMed  CAS  Google Scholar 

  147. Miller L, Link MP, Bologna S, et al. Cerebellar atrophy caused by high-dose cytosine arabinoside: CT and MR findings. AJR 1989; 152: 343–344.

    PubMed  CAS  Google Scholar 

  148. Ramos A, Quintana F, Diez C, et al. CT findings in spinocerebellar degeneration. AJNR 1987; 8: 635–640.

    PubMed  CAS  Google Scholar 

  149. Biondi A, Dormont D, Weitzner I Jr, et al. MR imaging of the cervical cord in juvenile amyotrophy of distal upper extremity. AJNR 1989; 10: 263–268.

    PubMed  CAS  Google Scholar 

  150. Goodin DS, Rowley HA, Olney RK. Magnetic resonance imaging in amyotrophic lateral sclerosis. Arm Neurol 1988; 23: 418–420.

    CAS  Google Scholar 

  151. Sherman JL, Clawson LL, Citrin CH, Cornblath D, Kund R. MR evaluation of amyotrophic lateral sclerosis (ALS). AJNR 1987; 8: 941.

    Google Scholar 

  152. Cheung G, Gawal MJ, Cooper PW, Farb RI, Ang LC. Amyotrophic lateral sclerosis: Correlation of clinical and MR image findings. Radiology 1995; 194: 263–270.

    PubMed  CAS  Google Scholar 

  153. Cobb SR, Mehringer CM. Wallerian degeneration in a patient with Schilder disease: MR imaging demonstration. Radiology 1987; 162: 521–522.

    PubMed  CAS  Google Scholar 

  154. Kuhn MJ, Mikulis DJ, Ayoub DM, et al. Wallerian degeneration after cerebral infarction: evaluation with sequential imaging. Radiology 1989; 172: 179–182.

    PubMed  CAS  Google Scholar 

  155. Rafto SE, Wallace SF, Grossman RI, et al. Magnetic resonance imaging: an animal model of wallerian degeneration. AJNR 1988; 9: 1025–1026.

    Google Scholar 

  156. Braffman BH. The aging brain and neurodegenerative disorders. Core Curriculum Course in Neuroradiology at the Thirty-Third Annual Meeting of the American Society of Neuroradiology. Chicago, April 22, 1995.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Braffman, B.H. (2000). The Aging Brain and Neurodegenerative Disorders. In: Zimmerman, R.A., Gibby, W.A., Carmody, R.F. (eds) Neuroimaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1152-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1152-5_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7025-6

  • Online ISBN: 978-1-4612-1152-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics