Skip to main content

The Painlevé Approach to Nonlinear Ordinary Differential Equations

  • Chapter
The Painlevé Property

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

The “Painlevé analysis” is quite often perceived as a collection of tricks reserved to experts. The aim of this chapter is to demonstrate the contrary and to unveil the simplicity and the beauty of a subject that is, in fact, the theory of the (explicit) integration of nonlinear differential equations.

To achieve our goal, we will not start the exposition with a more or less precise “Painlevé test.” On the contrary, we will finish with it, after a gradual introduction to the rich world of singularities of nonlinear differential equations, so as to remove any cooking recipe.

The emphasis is put on embedding each method of the test into the well-known theorem of perturbations of Poincaré. A summary can be found at the beginning of each section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.J. Ablowitz and P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge Univ. Press, Cambridge, 1991).

    MATH  Google Scholar 

  2. M.J. Ablowitz and H. Segur, Exact linearization of a Painlevé transcendent, Phys. Rev. Lett. 38 (1977), 1103–1106.

    MathSciNet  ADS  Google Scholar 

  3. M.J. Ablowitz, A. Ramani, and H. Segur, Nonlinear evolution equations and ordinary differential equations of Painlevé type, Lett. Nuovo Cimento 23 (1978), 333–338.

    MathSciNet  Google Scholar 

  4. M.J. Ablowitz, A. Ramani, and H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P-type. I, J. Math. Phys. 21 (1980), 715–721; II, 21 (1980), 1006–1015.

    MathSciNet  ADS  MATH  Google Scholar 

  5. M. Abramowitz and I.A. Stegun (eds.), Handbook of Mathematical Functions, tenth printing (National Bureau of Standards, Washington, 1972).

    MATH  Google Scholar 

  6. G.G. Appelrot, The problem of motion of a rigid body about a fixed point, Uchebnye zapiski Moskovskogo universiteta, Otdel fizichesko-matematicheskikh nauk 11 (1894).

    Google Scholar 

  7. A. Beauville, Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann, Séminaire Bourbaki, 45mathrme année, 1992–93, exposé 765, Astérisque 216 (1993), 103–119.

    MathSciNet  Google Scholar 

  8. V.A. Belinskii, G.W. Gibbons, D.N. Page, and C.N. Pope, Asymptotically Euclidean Bianchi IX metrics in quantum gravity, Phys. Lett. A 76 (1978), 433–435.

    MathSciNet  Google Scholar 

  9. D. Benest and C. Prœschlé (eds.), Introduction to methods of complex analysis and geometry for classical mechanics and nonlinear waves (Éditions Frontières, Gif-sur-Yvette, 1994). R. Conte, Singularities of differential equations and integrability, pages 49–143. M. Musette, Nonlinear partial differential equations, pages 145–195.

    Google Scholar 

  10. D. Bessis, An introduction to Kowalevski’s exponents, Partially Integrable Evolution Equations in Physics, eds. R. Conte and N. Boccara (Kluwer, Dordrecht, 1990), pages 299–320.

    Google Scholar 

  11. T. Bountis, A. Ramani, B. Grammaticos, and B. Dorizzi, On the complete and partial integrability of non-Hamiltonian systems, Physica A 128 (1984), 268–288.

    MathSciNet  ADS  Google Scholar 

  12. N. Bourbaki, Éléments de mathématique, I Théorie des ensembles, Fascicule de résultats (Hermann, Paris, 1958).

    MATH  Google Scholar 

  13. F.J. Bureau, Sur la recherche des équations différentielles du second ordre dont l’intégrale générale est à points critiques fixes, Bulletin de la Classe des Sciences XXV (1939), 51–68.

    Google Scholar 

  14. F.J. Bureau, Differential equations with fixed critical points, Annali di Mat. pura ed applicata LXIV (1964), 229–364 [abbreviated as M. I].

    MathSciNet  Google Scholar 

  15. F.J. Bureau, Differential equations with fixed critical points, Annali di Mat. pura ed applicata LXVI (1964), 1–116 [abbreviated as M. II].

    MathSciNet  Google Scholar 

  16. F.J. Bureau, Équations différentielles du second ordre en Y et du second degré en Y dont l’intégrale générale est à points critiques fixes, Annali di Mat. pura ed applicata XCI (1972), 163–281 [abbreviated as M. III].

    MathSciNet  Google Scholar 

  17. F.J. Bureau, Integration of some nonlinear systems of ordinary differential equations, Annali di Mat. pura ed applicata XCIV (1972), 345–360.

    MathSciNet  Google Scholar 

  18. F.J. Bureau, Sur des systèmes différentiels du troisième ordre et les équations différentielles associées, Bulletin de la Classe des Sciences LXXIII (1987), 335–353.

    MathSciNet  Google Scholar 

  19. F.J. Bureau, Differential equations with fixed critical points, Painlevé transcendents, their asymptotics and physical applications, 103–123, eds. D. Levi and P. Winternitz (Plenum, New York, 1992).

    Google Scholar 

  20. F.J. Bureau, (third order), in preparation.

    Google Scholar 

  21. É. Cartan, Sur les variétés à connexion projective, Bull. Soc. Math. France 52 (1924), 205–241.

    MathSciNet  MATH  Google Scholar 

  22. J. Chazy, Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, thesis, Paris (1910); Acta Math. 34 (1911), 317–385. Table des matières commentée avec index, R. Conte (1991), 6 pages.

    MathSciNet  MATH  Google Scholar 

  23. J. Chazy, Sur la limitation du degré des coëfficients des équations différentielles algébriques à points critiques fixes, C. R. Acad. Sc. Paris 155 (1912), 132–135.

    MATH  Google Scholar 

  24. J. Chazy, Sur la limitation du degré des coëfficients des équations différentielles algébriques à points critiques fixes, Acta Math. 41 (1918), 29–69.

    MathSciNet  Google Scholar 

  25. P.A. Clarkson, The Painlevé property and a partial differential equation with an essential singularity, Phys. Lett. A 109 (1985), 205–208.

    ADS  Google Scholar 

  26. P.A. Clarkson, References for the Painlevé equations, about 21 pages.

    Google Scholar 

  27. R. Conte, Painlevé analysis of nonlinear PDE and related topics: a computer algebra program, preprint (1988), 1–7. Same title, Computer algebra and differential equations, ed. E. Tournier (Academic Press, New York, 1989), page 219.

    Google Scholar 

  28. R. Conte, Universal invariance properties of Painlevé analysis and Bäcklund transformation in nonlinear partial differential equations, Phys. Lett. A 134 (1988), 100–104.

    MathSciNet  ADS  Google Scholar 

  29. R. Conte, Invariant Painlevé analysis of partial differential equations, Phys. Lett. A 140 (1989), 383–390.

    MathSciNet  ADS  Google Scholar 

  30. R. Conte, Unification of PDE and ODE versions of Painlevé analysis into a single invariant version, Painlevé transcendents, their asymptotics and physical applications, eds. D. Levi and P. Winternitz (Plenum, New York, 1992), pages 125–144.

    Google Scholar 

  31. R. Conte, A.P. Fordy, and A. Pickering, A perturbative Painlevé approach to nonlinear differential equations, Physica D 69 (1993), 33–58.

    MathSciNet  ADS  MATH  Google Scholar 

  32. R. Conte and M. Musette, A simple method to obtain first integrals of dynamical systems, Solitons and chaos (Research Reports in Physics-Nonlinear Dynamics) eds. I.A. Antoniou and F.J. Lambert (Springer, Berlin, 1991), pages 125–128.

    Google Scholar 

  33. R. Conte and M. Musette Link between solitary waves and projective Riccati equations, J. Phys. A 25 (1992), 5609–5623.

    MathSciNet  ADS  MATH  Google Scholar 

  34. R. Conte and M. Musette, Linearity inside nonlinearity: exact solutions to the complex Ginzburg-Landau equation, Physica D 69 (1993), 1–17.

    MathSciNet  ADS  MATH  Google Scholar 

  35. R. Conte and M. Musette, A new method to test discrete Painlevé equations, Phys. Lett. A 223 (1996), 439–448.

    MathSciNet  ADS  MATH  Google Scholar 

  36. G. Contopoulos, B. Grammaticos, and A. Ramani, Painlevé analysis for the mixmaster universe model, J. Phys. A 25 (1993), 5795–5799.

    MathSciNet  ADS  Google Scholar 

  37. G. Contopoulos, B. Grammaticos, and A. Ramani, The mixmaster universe model, revisited, J. Phys. A 27 (1994), 5357–5361.

    MathSciNet  ADS  MATH  Google Scholar 

  38. C.M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second order I. Hyperbolic equations in two independent variables, Stud. Appl. Math. 89 (1993), 1–61.

    MathSciNet  MATH  Google Scholar 

  39. C.M. Cosgrove, Painlevé classification of all semilinear partial differential equations of the second order II.Parabolic and higher dimensional equations, Stud. Appl. Math. 89 (1993), 95–151.

    MathSciNet  MATH  Google Scholar 

  40. C.M. Cosgrove, All binomial-type Painlevé equations of the second order and degree three or higher, Stud. Appl. Math. 90 (1993), 119–187.

    MathSciNet  MATH  Google Scholar 

  41. C.M. Cosgrove, Painlevé classification problems featuring essential singularities, Stud. Appl. Math. 98 (1997), 355–433.

    MathSciNet  Google Scholar 

  42. C.M. Cosgrove, Corrections and annotations to E.L. Ince, Ordinary differential equations, Chapter 14, on the classification of Painleve differential equations, unpublished (1993).

    Google Scholar 

  43. C.M. Cosgrove and G. Scoufis, Painlevé classification of a class of differential equations of the second order and second degree, Stud. Appl. Math. 88 (1993), 25–87.

    MathSciNet  MATH  Google Scholar 

  44. G. Darboux, Sur la théorie des coordonnées curvilignes et des systèmes orthogonaux, Annales scientifiques de l’École normale supérieure 7 (1878), 101–150.

    MathSciNet  Google Scholar 

  45. G. Darboux, Sur les équations aux dérivées partielles, C. R. Acad. Sc. Paris 96 (1883), 766–769.

    Google Scholar 

  46. H.T. Davis, Introduction to nonlinear differential and integral equations, no. O-556037 (U.S.Government Printing Office, Washington D.C., 1961).

    Google Scholar 

  47. J.-M. Drouffe, Simplex AMP reference manual, version 1.0 (SPhT, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, 1996).

    Google Scholar 

  48. V.S. Dryuma, Projective duality in the theory of second order differential equations, Mat. Issled., Kishinev 112 (1990), 93–103.

    MathSciNet  MATH  Google Scholar 

  49. V.P. Ermakov, Équations différentielles du deuxième ordre. Conditions d’intégrabilité sous forme finale. Univ. Izv. Kiev (1880), Ser. 3, No. 9, 1–25. [English translation by A.O. Harin, 29 pages].

    Google Scholar 

  50. A.P. Fordy, The Hénon-Heiles system revisited, Physica D 52 (1991), 204–210.

    MathSciNet  ADS  MATH  Google Scholar 

  51. A.P. Fordy and J. Gibbons, Some remarkable nonlinear transformations, Phys. Lett. A 75 (1980), 325–325.

    MathSciNet  ADS  Google Scholar 

  52. A.P. Fordy and A. Pickering, Analysing negative resonances in the Painlevé test, Phys. Lett. A 160 (1991), 347–354.

    MathSciNet  ADS  Google Scholar 

  53. R. Fuchs, Sur quelques équations différentielles linéaires du second ordre, C. R. Acad. Sc. Paris 145 (1905), 555–558.

    Google Scholar 

  54. B. Gambier, Sur les équations différentielles dont l’intégrale générale est uniforme, C. R. Acad. Sc. Paris 142 (1906), 266–269, 1403-1406, 1497-1500.

    MATH  Google Scholar 

  55. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, C. R. Acad. Sc. Paris 143 (1906), 741–743; 144 (1907), 827-830, 962-964.

    Google Scholar 

  56. B. Gambier, Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes, thesis, Paris (1909); Acta Math. 33 (1910), 1–55.

    MathSciNet  Google Scholar 

  57. C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.

    ADS  MATH  Google Scholar 

  58. R. Gamier, Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes, thesis, Paris (1911); Annales scientifiques de l’École normale supérieure 29 (1912), 1–126.

    Google Scholar 

  59. R. Gamier, Sur des systèmes différentiels du second ordre dont l’intégrale générale est uniforme, Annales scientifiques de l’École normale supérieure 77 (1960), 123–144.

    Google Scholar 

  60. V.V. Golubev, Lectures on the integration of the equation of motion of a rigid body about a fixed point (Gostechizdat (State publishing house), Moscow, 1953). English (Israel program for scientific translations, 1960).

    Google Scholar 

  61. B. Grammaticos, B. Dorizzi, and A. Ramani, Solvable integrodifferential equations and their relation to the Painlevé conjecture, Phys. Rev. Lett. 53 (1984), 1–4.

    MathSciNet  ADS  Google Scholar 

  62. G.-H. Halphen, Sur un système d’équations différentielles, C. R. Acad. Sc. Paris 92 (1881), 1101–1103. Reprinted, Œuvres, volume 2, 475-477 (1918).

    Google Scholar 

  63. M. Hénon and C. Heiles, The applicability of the third integral of motion: some numerical experiments, Astron. J. 69 (1964), 73–79.

    ADS  Google Scholar 

  64. E. Hille, Ordinary Differential Equations in the Complex Domain (J.Wiley and Sons, New York, 1976).

    MATH  Google Scholar 

  65. P. Hoyer, Über die Integration eines Differentialgleichungssystems von der Form dx 1/dt = a 1 x 2 x 3 + a 2 x 3 x 1 + a 3 x 1 x 2, dx 2/dt = b 1 x 2 x 3+b 2 x 3 x 1+b 3 x 1 x 2, dx 3/dt = c 1 x 2 x 3 +c 2 x 3 x 1+c 3 x 1 x 2 durch elliptische Funktionen, Dissertation Königl. Friedrich-Wilhelms Univ., Berlin (1879), 1–36.

    Google Scholar 

  66. L. Hsu and N. Kamran, Classification of second-order ordinary differential equations admitting Lie groups of fiber-preserving point symmetries, Proc. London Math. Soc. 58 (1989), 387–416.

    MathSciNet  MATH  Google Scholar 

  67. E.L. Ince, Ordinary Differential Equations (Longmans, Green, and Co., London and New York, 1926). Reprinted (Dover, New York, 1956). See errata in [42].

    Google Scholar 

  68. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, two volumes (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  69. M. Jimbo, M.D. Kruskal, and T. Miwa, Painlevé test for the self-dual Yang-Mills equation, Phys. Lett. A 92 (1982), 59–60.

    MathSciNet  ADS  Google Scholar 

  70. M. Jimbo and T. Miwa, Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II, Physiea D 2 (1981), 407–448.

    MathSciNet  ADS  MATH  Google Scholar 

  71. N. Joshi and M.D. Kruskal, A local asymptotic method of seeing the natural barrier of the solutions of the Chazy equation, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, ed. P.A. Clarkson (Plenum, New York, 1993), pages 331–340.

    Google Scholar 

  72. D.J. Kaup, On the inverse scattering problem for cubic eigenvalue problems of the class ψxxx + SQψx + 6Rψ = λψ, Stud. Appl. Math. 62 (1980), 189–216.

    MathSciNet  MATH  Google Scholar 

  73. S.V. Kovalevski, Sur le problème de la rotation d’un corps solide autour d’un point fixe, Acta Math. 12 (1889), 177–232.

    MathSciNet  Google Scholar 

  74. S.V. Kovalevski, Sur une propriété du système d’équations différentielles qui définit la rotation d’un corps solide autour d’un point fixe, Acta Math. 14 (1890), 81–93.

    MathSciNet  Google Scholar 

  75. M.D. Kruskal, Flexibility in applying the Painlevé test, Painlevé Transcendents, Their Asymptotics and Physical Applications, eds. D. Levi and P. Winternitz (Plenum, New York, 1992), pages 187–195.

    Google Scholar 

  76. M.D. Kruskal and P.A. Clarkson, The Painlevé-Kowalevski and poly-Painlevé tests for integrability, Stud. Appl. Math. 86 (1992), 87–165.

    MathSciNet  MATH  Google Scholar 

  77. M. Ku’s, Integrals of motion for the Lorenz system, J. Phys. A 16 (1983), L689–L691.

    MathSciNet  ADS  Google Scholar 

  78. S. Labrunie and R. Conte, A geometrical method towards first integrals for dynamical systems, J. Math. Phys. 37 (1996), 6198–6206.

    MathSciNet  ADS  MATH  Google Scholar 

  79. L.D. Landau and E.M. Lifshitz, Théorie classique des champs, chapter Problèmes cosmologiques (Mir, Moscow, 1989, 4th edition).

    Google Scholar 

  80. A. Latifi, M. Musette, and R. Conte, The Bianchi IX (mixmaster) cosmological model is not integrable, Phys. Lett. A 194 (1994), 83–92; 197 (1995), 459-460.

    MathSciNet  ADS  MATH  Google Scholar 

  81. P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467–490.

    MathSciNet  MATH  Google Scholar 

  82. G. Levine and M. Tabor, Integrating the nonintegrable: analytic structure of the Lorenz system revisited, Physica D 33 (1988), 189–210.

    MathSciNet  ADS  MATH  Google Scholar 

  83. R. Liouville, Sur les invariants de certaines équations différentielles et sur leurs applications, Journal de l’École Polytechnique LIX (1889), 7–76.

    Google Scholar 

  84. G.M. Murphy, Ordinary Differential Equations and Their Solutions (Van Nostrand, Princeton, 1960).

    MATH  Google Scholar 

  85. M. Musette, Chapter 8 of this volume.

    Google Scholar 

  86. M. Musette and R. Conte, Non-Fuchsian extension to the Painlevé test. Phys. Lett. A 206 (1995), 340–346.

    MathSciNet  ADS  MATH  Google Scholar 

  87. P.K. Nekrasov, The problem of motion of a rigid body about a fixed point, Matem. Sb. 16 (1892).

    Google Scholar 

  88. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, Berlin, 1986).

    MATH  Google Scholar 

  89. L.V. Ovsiannikov, Group Analysis of Differential Equations (Academic Press, New York, 1982).

    MATH  Google Scholar 

  90. P. Painlevé, Leçons sur la théorie analytique des équations différentielles (Leçons de Stockholm, delivered in 1895) (Hermann, Paris, 1897). Reprinted, Œuvres de Paul Painlevé, vol. I (Éditions du CNRS, Paris, 1973).

    Google Scholar 

  91. P. Painlevé, Mémoire sur les équations différentielles dont l’intégrale générale est uniforme, Bull. Soc. Math. France 28 (1900), 201–261.

    MathSciNet  MATH  Google Scholar 

  92. P. Painlevé, Sur les équations différentielles d’ordre quelconque à points critiques fixes, C. R. Acad. Sc. Paris 130 (1900), 1112–1115.

    MATH  Google Scholar 

  93. P. Painlevé, Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme, Acta Math. 25 (1902), 1–85.

    MathSciNet  Google Scholar 

  94. P. Painlevé, Observations au sujet de la Communication précédente (de Arnaud Denjoy), C. R. Acad. Sc. Paris 148 (1902), 1156–1157.

    Google Scholar 

  95. P. Painlevé, Sur les équations différentielles du second ordre à points critiques fixes, C. R. Acad. Sc. Paris 143 (1906), 1111–1117.

    Google Scholar 

  96. Œuvres de Paul Painlevé, 3 volumes (Éditions du CNRS, Paris, 1973, 1974, 1976). Order to: La librairie de CNRS-Éditions, 151 bis, rue Saint-Jacques, F-75005 Paris, phone +33-1-53100505, fax+33-1–53100557, e-mail editions@edition.enrs.fr).

    Google Scholar 

  97. A. Pickering, Testing nonlinear evolution equations for complete in-tegrability, Ph.D. thesis, University of Leeds (1992).

    Google Scholar 

  98. E. Pinney, The nonlinear differential equation y″(x) + p(x)y(x) + c/y3(x) = 0, Proc. Amer. Math. Soc. 1 (1950), 681.

    MathSciNet  MATH  Google Scholar 

  99. H. Poincaré, Sur un théorème de M. Fuchs, Acta Math. 7 (1885), 1–32.

    MathSciNet  MATH  Google Scholar 

  100. H. Poincaré, Les méthodes nouvelles de la mécanique céleste, 3 volumes (Gauthier-Villars, Paris, 1892, 1893, 1899).

    Google Scholar 

  101. J.-F. Pommaret, Lie Pseudogroups and Mechanics (Gordon and Breach, New York, 1988).

    MATH  Google Scholar 

  102. A. Ramani, B. Grammaticos, and T. Bountis, The Painlevé property and singularity analysis of integrable and nonintegrable systems, Physics Reports 180 (1989), 159–245.

    MathSciNet  ADS  Google Scholar 

  103. K.A. Robbins, Periodic solutions and bifurcation structure at high R in the Lorenz model, SIAM J. Appl. Math. 36 (1979), 457–472.

    MathSciNet  ADS  MATH  Google Scholar 

  104. K. Sawada and T. Kotera, A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Prog. Theor. Phys. 51 (1974), 1355–1367.

    MathSciNet  ADS  MATH  Google Scholar 

  105. F. Ayres Jr., Theory and Problems of Differential Equations (Mc-Graw Hill, New York, 1972).

    Google Scholar 

  106. L. Schlesingcr, Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten, J. für R. und Angew. Math. 141 (1912), 96–145.

    Google Scholar 

  107. H. Segur, Solitons and the inverse scattering transform, Topics in Ocean Physics, eds. A.R. Osborne and P. Malanotte Rizzoli (North-Holland Publ. Co., Amsterdam, 1982), pages 235–277.

    Google Scholar 

  108. T. Sen and M. Tabor, Lie symmetries of the Lorenz model, Physica D 44 (1990), 313–339.

    MathSciNet  ADS  MATH  Google Scholar 

  109. A.H. Taub, Empty space-times admitting a three-parameter group of motions, Annals of Math. 53 (1951), 472–490.

    MathSciNet  ADS  MATH  Google Scholar 

  110. A. Tresse, Détermination des invariants ponctuels de l’équation différentielle ordinaire du second ordre y″ = ω(x,y,y′). Leipzig 1896. 87 S. gr. 8°. Fürstl. Jablonowski’schen Gesellschaft zu Leipzig. Nr. 32 (13 der math.-naturw. Section). Mémoire couronné par l’Académie Jablonowski; S. Hirkel, Leipzig (1896).

    Google Scholar 

  111. H. Umemura, Birational automorphic groups and differential equations, Nagoya Math. J. 119 (1990), 1–80.

    MathSciNet  MATH  Google Scholar 

  112. G. Valiron, Cours d’analyse mathématique, (Masson, Paris, 1950, 2nd edition).

    Google Scholar 

  113. J. Weiss, M. Tabor, and G. Carnevale, The Painlevé property for partial differential equations, J. Math. Phys. 24 (1983), 522–526.

    MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Conte, R. (1999). The Painlevé Approach to Nonlinear Ordinary Differential Equations. In: Conte, R. (eds) The Painlevé Property. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1532-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1532-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98888-7

  • Online ISBN: 978-1-4612-1532-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics