Skip to main content

Discrete Tomography: A Historical Overview

  • Chapter
Discrete Tomography

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this chapter we introduce the topic of discrete tomography and give a brief historical survey of the relevant contributions. After discussing the nature of the basic theoretical problems (those of consistency, uniqueness, and reconstruction) that arise in discrete tomography, we give the details of the classical special case (namely, two-dimensional discrete sets — i.e.,binary matrices — and two orthogonal projections) including a polynomial time reconstruction algorithm. We conclude the chapter with a summary of some of the applications of discrete tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography, (Academic Press, New York), 1980.

    Google Scholar 

  2. G. G. Lorentz, “A problem of plane measure,” Amer. J. Math., 71, 417–426 (1949).

    Article  Google Scholar 

  3. A. Rényi, “On projections of probability distributions,” Acta Math. Acad. Sci. Hung., 3, 131–142 (1952).

    Article  Google Scholar 

  4. A. Heppes, “On the determination of probability distributions of more dimensions by their projections,” Acta Math. Acad. Sci. Hung., 7, 403–410 (1956).

    Article  Google Scholar 

  5. H. Kellerer, “Funktionen auf Produkträumen mit vorgegebenen Marginal-Funktionen,” Math. Ann., 144, 323–344 (1961).

    Article  Google Scholar 

  6. H. Kellerer, “Masstheoretische Marginalprobleme,” Math. Ann. 153, 168–198 (1964).

    Article  Google Scholar 

  7. H. Kellerer, “Marginalprobleme für Funktionen,” Math. Ann., 154, 147–150 (1964).

    Article  Google Scholar 

  8. H. J. Ryser, “Combinatorial properties of matrices of zeros and ones,” Ganad. J. Math., 9, 371–377 (1957).

    Article  Google Scholar 

  9. D. Gale, “A theorem on flows in networks,” Pacific J. Math., 7, 1073–1082 (1957).

    Article  Google Scholar 

  10. H. J. Ryser, “Traces of matrices of zeros and ones,” Canad. J. Math., 12, 463–476 (1960).

    Article  Google Scholar 

  11. L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks, (Princeton University Press, Princeton, NJ), 1962.

    Google Scholar 

  12. J. Steiner “Einfache Beweis der isoperimetrischen Hauptsätze,” J. reine angew. Math., 18, 289–296 (1838).

    Google Scholar 

  13. P. C. Hammer “Problem 2,” In Proc. Symp. Pure Math., vol. VII: Convexity, (Amer. Math. Soc., Providence, RI), pp. 498–499, 1963.

    Google Scholar 

  14. O. Giering, “Bestimmung von Eibereichen und Eikörpern durch Steiner-Symmetrisierungen,” Sitzungsberichten Bayer. Akad. Wiss. München, Math.-Nat. Kl., pp. 225–253 (1962).

    Google Scholar 

  15. R. J. Gardner and P. McMullen, “On Hammer’s X-ray problem,” J. London Math. Soc., 21, 171–175 (1980).

    Article  Google Scholar 

  16. R. J. Gardner, Geometric Tomography, (Cambridge University Press, Cambridge, UK), 1995.

    Google Scholar 

  17. G. Bianchi and M. Longinetti, “Reconstructing plane sets from projections,” Discrete Comp. Geom., 5, 223–242 (1990).

    Article  Google Scholar 

  18. R. J. Gardner and P. Gritzmann, “Discrete tomography: Determination of finite sets by X-rays,” Trans. Amer. Math. Soc., 349, 2271–2295 (1997).

    Article  Google Scholar 

  19. P. Gritzmann and M. Nivat (Eds.), Discrete Tomography: Algorithms and Complexity, (Dagstuhl-Seminar-Report 165, Dagstuhl, Germany), 1997.

    Google Scholar 

  20. G. T. Herman and A. Kuba (Editors), Discrete Tomography,. Special Issue of Intern. J. of Imaging Systems and Techn., Vol. 9, No. 2/3, 1998.

    Google Scholar 

  21. R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography,” J. Theor. Biol., 29, 471–481 (1970).

    Article  CAS  PubMed  Google Scholar 

  22. G. T. Herman, A. Lent, and S. W. Rowland, “ART: Mathematics and applications,” J. Theor. Biol., 42, 1–32 (1973).

    Article  CAS  PubMed  Google Scholar 

  23. G. T. Herman, “Reconstruction of binary patterns from a few projections,” In A. Günther, B. Levrat and H. Lipps, Intern, Computing Symposium 1973, (North-Holland Publ. Co., Amsterdam), pp. 371–378, 1974.

    Google Scholar 

  24. P. Gritzmann, D. Prangenberg, S. de Vries, and M. Wiegelmann, “Success and failure of certain reconstruction and uniqueness algorithms in discrete tomography,” Intern. J. of Imaging Systems and Techn., 9, 101–109 (1998).

    Article  Google Scholar 

  25. Y. Vardi and D. Lee, “The discrete Radon transform and its approximate inversion via the EM algorithm,” Intern. J. Imaging Systems and Techn., 9, 155–173 (1998).

    Article  Google Scholar 

  26. J. H. B. Kemperman and A. Kuba, “Reconstruction of two-valued matrices from their two projections,” Intern. J. of Imaging Systems and Techn., 9, 110–117 (1998).

    Article  Google Scholar 

  27. D. Rossi and A. Willsky, “Reconstruction from projections based on detection and estimation of objects: Performance analysis and robustness analysis,” IEEE Trans. Acoust. Speech Signal Process., 32, 886–906 (1984).

    Article  Google Scholar 

  28. J. Singer, F. A. Grünbaum, P. Kohn, and J. Zubelli, “Image reconstruction of the interior of bodies that diffuse radiation,” Science, 248, 990–993 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. D. R. Fulkerson and H. J. Ryser, “Width sequences for special classes of (0,1)-matrices,” Canad. J. Math., 15, 371–396 (1963).

    Article  Google Scholar 

  30. S.-K. Chang and Y. R. Wang, “Three-dimensional reconstruction from orthogonal projections,” Pattern Recognition, 7, 167–176 (1975).

    Article  Google Scholar 

  31. S.-K. Chang, “The reconstruction of binary patterns from their projections,” Commun. ACM, 14, 21–25 (1971).

    Article  Google Scholar 

  32. S.-K. Chang, “Algorithm 445. Binary pattern reconstruction from projections,” Commun. ACM, 16, 185–186 (1973).

    Article  Google Scholar 

  33. Y. R. Wang, “Characterization of binary patterns and their projections,” IEEE Trans. Computers, C24, 1032–1035 (1975).

    Article  Google Scholar 

  34. W. Wandi, “The class 2t(R, S), of (0,1)-matrices,” Discrete Math., 39, 301–305 (1982).

    Article  Google Scholar 

  35. W. Honghui, “Structure and cardinality of the class 2t(R, S), of (0,1)-matrices,” J. Math. Research and Exposition, 4, 87–93 (1984).

    Google Scholar 

  36. S. Jiayu, “On a guess about the cardinality of the class 2t(R, S), of (0,1)-matrices,” J. Tongji Univ., 14, 52–55 (1986).

    Google Scholar 

  37. W. Xiaohong, “The cardinality of the class 2t(R, S), of (0,1)-matrices,” J. Sichuan Univ. Nat. Sci. Edition, 4, 95–99 (1986).

    Google Scholar 

  38. W. Xiaohong, “A necessary and sufficient condition for 14(R,S)I, to equal its lower bound,” J. Sichuan Univ. Nat. Sci. Edition, 24, 136–143 (1987).

    Google Scholar 

  39. L. Mirsky, Transversal Theory, (Academic Press, New York), 1971.

    Google Scholar 

  40. D. R. Fulkerson, “Zero-one matrices with zero trace,” Pacific J. Math., 10, 831–836 (1960).

    Article  Google Scholar 

  41. R. P. Anstee, “Properties of a class of (0,1)-matrices covering a given matrix,” Canad. J. Math., 34, 438–453 (1982).

    Article  Google Scholar 

  42. R. P. Anstee, “Triangular (0,1)-matrices with prescribed row and column sums,” Discrete Math., 40, 1–10 (1982).

    Article  Google Scholar 

  43. R. P. Anstee, “The network flows approach for matrices with given row and column sums,” Discrete Math., 44, 125–138 (1983).

    Article  Google Scholar 

  44. L. Mirsky, “Combinatorial theorems and integral matrices,” J. Combin. Theor., 5, 30–44 (1968).

    Article  Google Scholar 

  45. A. Kuba and A. Volcic, “Characterization of measurable plane sets which are reconstructable from their two projections,” Inverse Problems, 4, 513–527 (1988).

    Article  Google Scholar 

  46. P. C. Fishburn, J. C. Lagarias, J. A. Reeds, and L. A. Shepp, “Sets uniquely determined by projections on axes II. Discrete case,” Discrete Math., 91, 149–159 (1991).

    Article  Google Scholar 

  47. H. J. Ryser, Combinatorial Mathematics, (The Math. Assoc. Amer., Washington, DC), 1963.

    Google Scholar 

  48. R. A. Brualdi, “Matrices of zeros and ones with fixed row and column sum vectors,” Lin. Algebra and Its Appl., 33, 159–231 (1980).

    Article  Google Scholar 

  49. A. Kuba, “Reconstruction of unique binary matrices with prescribed elements,” Acta Cybern., 12, 57–70 (1995).

    Google Scholar 

  50. R. Aharoni, G. T. Herman, and A. Kuba, “Binary vectors partially determined by linear equation systems,” Discrete Math., 171,1–16 (1997).

    Article  Google Scholar 

  51. H. J. Ryser, “The term rank of a matrix,” Canad. J. Math, 10, 57–65 (1958).

    Article  Google Scholar 

  52. H. J. Ryser, “Matrices of zeros and ones,” Bull. Amer. Math. Soc., 66, 442–464 (1960).

    Article  Google Scholar 

  53. M. Haber, “Term rank of 0, 1 matrices,” Rend. Sem. Mat. Padova, 30, 24–51 (1960).

    Google Scholar 

  54. A. Kuba, “Determination of the structure of the class 21(R, S), of (0,1)-matrices,” Acta Cybernetica, 9, 121–132 (1989).

    Google Scholar 

  55. W. Y. C. Chen, “Integral matrices with given row and column sums,” J. Combin. Theory, Ser,. A 61, 153–172 (1992).

    Article  Google Scholar 

  56. S.-K. Chang and G. L. Shelton, “Two algorithms for multiple-view binary pattern reconstruction,” IEEE Trans. Systems, Man, Cybernetics SMC., 1, 90–94 (1971).

    Article  Google Scholar 

  57. L. Huang, “The reconstruction of uniquely determined plane sets from two projections in discrete case,” Preprint Series, UTMS 95–29, Univ. of Tokyo (1995).

    Google Scholar 

  58. A. Kuba, “The reconstruction of two-directionally connected binary patterns from their two orthogonal projections,” Comp. Vision,Graphics, Image Proc., 27, 249–265 (1984).

    Article  Google Scholar 

  59. A. Rosenfeld and A. C. Kak, “Digital Picture Processing,” (Academic Press, New York) 1976.

    Google Scholar 

  60. G. T. Herman, “Geometry of Digital Spaces,” (Birkhäuser, Boston) 1998.

    Google Scholar 

  61. A. Del Lungo, M. Nivat and R. Pinzani, “The number of convex polyominoes reconstructible from their orthogonal projections,” Discrete Math., 157, 65–78 (1996).

    Article  Google Scholar 

  62. E. Barcucci, A. Del Lungo, M. Nivat, and R. Pinzani, “Reconstructing convex polyominoes from horizontal and vertical projections,” Theor. Comput. Sci., 155, 321–347 (1996).

    Article  Google Scholar 

  63. E. Barcucci, A. Del Lungo, M. Nivat, and R. Pinzani, “Medians of polyominoes: A property for the reconstruction,” Int. J. Imaging Systems and Techn., 9, 69–77 (1998).

    Article  Google Scholar 

  64. M. Chrobak and C. Dürr, “Reconstructing hv-convex polyominoes from orthogonal projections,” (Preprint, Dept. of Computer Science, Univ. of California, Riverside, CA), 1998.

    Google Scholar 

  65. G. J. Woeginger, “The reconstruction of polyominoes from their orthogonal projections,” (Techn. Rep. F003, TU-Graz), 1996.

    Google Scholar 

  66. R. W. Irving and M. R. Jerrum, “Three-dimensional statistical data security problems,” SIAM J. Comput., 23, 170–184 (1994).

    Article  Google Scholar 

  67. A. R. Shliferstein and Y. T. Chien, “Some properties of image-processing operations on projection sets obtained from digital pictures,” IEEE Trans. Comput., C-26, 958–970 (1977).

    Article  Google Scholar 

  68. Z. Mao and R. N. Strickland, “Image sequence processing for target estimation in forward-looking infrared imagery,” Optical Engrg., 27, 541–549 (1988).

    Google Scholar 

  69. A. Fazekas, G. T. Herman, and A. Matej, “On processing binary pictures via their projections,” Int. J. Imaging Systems and Techn., 9, 99–100 (1998).

    Article  Google Scholar 

  70. A. V. Crewe and D. A. Crewe, “Inexact reconstruction: Some improvements,” Ultramicroscopy, 16, 33–40 (1985).

    Article  Google Scholar 

  71. P. Schwander, C. Kisielowski, M. Seibt, F. H. Baumann, Y. Kim, and A. Ourmazd, “Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy,” Phys. Rev. Letters, 71, 4150–4153 (1993).

    Article  CAS  Google Scholar 

  72. C. Kisielowski, P. Schwander, F. H. Baumann, M. Seibt, Y. Kim, and A. Ourmazd, “An approach to quantitative high-resolution electron microscopy of crystalline materials,” Ultramicroscopy, 58, 131–155 (1995).

    Article  CAS  Google Scholar 

  73. D. G. W. Onnasch, and P. H. Heintzen, “A new approach for the reconstruction of the right or left ventricular form from biplane angiocardiographic recordings,” In Conf. Comp. Card. 1976, (IEEE Comp. Soc. Press, Washington), pp. 67–73, 1976.

    Google Scholar 

  74. C. H. Slump and J. J. Gerbrands, “A network flow approach to reconstruction of the left ventricle from two projections,” Comp. Graphics and Image Proc., 18, 18–36 (1982).

    Article  Google Scholar 

  75. G. P. M. Prause and D. G. W. Onnasch, “Binary reconstruction of the heart chambers from biplane angiographic image sequences,” IEEE Trans. Medical Imaging, MI15, 532–546 (1996).

    Article  Google Scholar 

  76. S.-K. Chang and C. K. Chow, “The reconstruction of three-dimensional objects from two orthogonal projections and its application to cardiac cineangiography,” IEEE Trans. Comput., C22, 18–28 (1973).

    Article  Google Scholar 

  77. B. M. Carvalho, G. T. Herman, S. Matej, C. Salzberg, and E. Vardi, “Binary tomography for triplane cardiography,” In A. Kuba, M. Samal, A. Todd-Pokropek, Information Processing in Medical Imaging Conference, 1999 (Springer-Verlag, Berlin), to be published.

    Google Scholar 

  78. N. Robert, F. Peyrin, and M. J. Yaffe, “Binary vascular reconstruction from a limited number of cone beam projections,” Med. Phys., 21, 1839–1851 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuba, A., Herman, G.T. (1999). Discrete Tomography: A Historical Overview. In: Herman, G.T., Kuba, A. (eds) Discrete Tomography. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1568-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1568-4_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7196-3

  • Online ISBN: 978-1-4612-1568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics