Skip to main content

Part of the book series: Springer Series in Statistics ((PSS))

Abstract

The information criterion AIC was introduced to extend the method of maximum likelihood to the multimodel situation. It was obtained by relating the successful experience of the order determination of an autoregressive model to the determination of the number of factors in the maximum likelihood factor analysis. The use of the AIC criterion in the factor analysis is particularly interesting when it is viewed as the choice of a Bayesian model. This observation shows that the area of application of AIC can be much wider than the conventional i.i.d. type models on which the original derivation of the criterion was based. The observation of the Bayesian structure of the factor analysis model leads us to the handling of the problem of improper solution by introducing a natural prior distribution of factor loadings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of Statistical Mathematics, 21,243–247.

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike, H. (1970). Statistical predictor identification. Annals of the Institute of Statistical Mathematics, 22, 203–217.

    Article  MathSciNet  MATH  Google Scholar 

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov & F. Csaki (Eds.), 2nd International Symposium on Information Theory (pp. 267–281). Budapest: Akademiai Kiado.

    Google Scholar 

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716–723.

    Article  MathSciNet  Google Scholar 

  • Akaike, H. (1980). Likelihood and the Bayes procedure. In J. M. Bernardo, M. H. De Groot, D. V. Lindley, & A. F. M. Smith (Eds.), Bayesian Statistics (pp. 143–166). Valencia: University Press.

    Google Scholar 

  • Akaike, H. (1985). Prediction and entropy. In A. C. Atkinson & S. E. Fienberg (Eds.), A Celebration of Statistics (pp. 1–24). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Bartholomew, D. J. (1981). Posterior analysis of the factor model. British Journal of Mathematical and Statistical Psychology, 34, 93–99.

    Article  MathSciNet  MATH  Google Scholar 

  • Bozdogan, H., & Ramirez, D. E. (1987). An expert model selection approach to determine the “best” pattern structure in factor analysis models. Unpublished manuscript.

    Google Scholar 

  • Harman, H. H. (1960). Modern Factor Analysis. Chicago: University Press.

    MATH  Google Scholar 

  • Jennrich, R.I., & Robinson, S. M. (1969). A Newton-Raphson algorithm for maximum likelihood factor analysis. Psychometrika, 34, 111–123.

    Article  MathSciNet  Google Scholar 

  • Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis. Psychometrika, 32, 443–482.

    Article  MathSciNet  MATH  Google Scholar 

  • Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. Psychometrika, 43, 443–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Lawley, D. N., & Maxwell, A. E. (1971). Factor Analysis as a Statistical Method, 2nd Edition. London: Butter-worths.

    Google Scholar 

  • Martin, J. K., & McDonald, R. P. (1975). Bayesian estimation in unrestricted factor analysis: a treatment for Heywood cases. Psychometrika, 40, 505–517.

    Article  MATH  Google Scholar 

  • Maxwell, A. E. (1961). Recent trends in factor analysis. Journal of the Royal Statistical Society, Series A, 124, 49–59.

    Article  MathSciNet  Google Scholar 

  • Rao, C. R. (1955). Estimation and tests of significance in factor analysis. Psychometrika, 20, 93–111.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsumura, Y., Fukutomi, K., & Asoo, Y. (1968). On the unique convergence of iterative procedures in factor analysis. TRU Mathematics, 4,52–59. (Science University of Tokyo).

    Google Scholar 

  • Tsumura, Y., & Sato, M. (1981). On the convergence of iterative procedures in factor analysis. TRU Mathematics, 17, 159–168. (Science University of Tokyo).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Akaike, H. (1987). Factor Analysis and AIC. In: Parzen, E., Tanabe, K., Kitagawa, G. (eds) Selected Papers of Hirotugu Akaike. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1694-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1694-0_29

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7248-9

  • Online ISBN: 978-1-4612-1694-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics