Skip to main content

Transforming Growth Factor-β Receptors and Signal Transduction

  • Chapter
Inhibin, Activin and Follistatin

Abstract

The transforming growth factor-β (TGF-β) superfamily consists of multifunctional proteins that include TGF-βs, activins, inhibins, and bone morphogenetic proteins (BMPs), which regulate growth, differentiation, metabolism, and apoptosis of various cell types (1,2). Members of the TGF-β superfamily transduce signals via heteromeric complexes of two different serine/threonine kinase receptors, denoted type I and type II. Both type I and type II receptors are required for signal transduction (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miyazono K, ten Dijke P, Ichijo H, Heldin C-H. Receptors for transforming growth factor-β. Adv Immunol 1994;55:181–220.

    Article  PubMed  CAS  Google Scholar 

  2. Kingsley DM. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994;8:133–46.

    Article  PubMed  CAS  Google Scholar 

  3. ten Dijke P, Miyazono K, Heldin C-H. Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr Opin Cell Biol 1996;8:139–45.

    Article  PubMed  Google Scholar 

  4. Yamashita H, ten Dijke P, Franzén P, Miyazono K, Heldin C-H. Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-β. J Biol Chem 1994;269:20172–8.

    PubMed  CAS  Google Scholar 

  5. Wieser R, Wrana JL, Massagué J. GS domain mutations that constitutively activate TβR-I, the downstream signaling component in the TGF-β receptor complex. EMBO J 1995;14:2199–208.

    PubMed  CAS  Google Scholar 

  6. Luo KX, Lodish HF. Signaling by chimeric erythropoietin-TGF-β receptors: homodimerization of the cytoplasmic domain of the type I TGF-β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J 1996;15:4485–96.

    PubMed  CAS  Google Scholar 

  7. Wrana JL, Attisano L, Wieser R, Ventura F, Massagué J. Mechanism of activation of the TGF-β receptor. Nature 1994;370:341–7.

    Article  PubMed  CAS  Google Scholar 

  8. Weis-Garcia F, Massagué J. Complementation between kinase-defective and activation-defective TGF-β receptors reveals a novel form of receptor cooperatively essential for signaling. EMBO J 1996;15:276–89.

    PubMed  CAS  Google Scholar 

  9. Souchelnytskyi S, ten Dijke P, Miyazono K, Heldin C-H. Phosphorylation of Serl65 in TGF-β type I receptor modulates TGF-β1-induced cellular responses. EMBO J 1996; (in press).

    Google Scholar 

  10. Massagué J. TGFβ signaling: receptors, transducers, and Mad proteins. Cell 1996;85:947–50.

    Article  PubMed  Google Scholar 

  11. Derynck R, Zhang Y. The Mad way to do it. Current Biol 1996;6:1226–9.

    Article  CAS  Google Scholar 

  12. Hoodless PA, Haerry T, Abdollah S, Stapleton M, O Connor MB, Attisano L, et al. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 1996;85:489–500.

    Article  PubMed  CAS  Google Scholar 

  13. Nakao A, Röijer E, Imamura T, Stenman G, Heldin C-H, ten Dijke P. Identification of MADR2, a human MAD-related protein in the TGF-β signaling pathway. J Biol Chem 1996 (in press).

    Google Scholar 

  14. Wieser R, Attisano L, Wrana JL, Massagué J. Signaling activity of transforming growth factor β type II receptors lacking specific domains in the ytoplasmic region. Mol Cell Biol 1993;13:7239–47.

    PubMed  CAS  Google Scholar 

  15. Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, et al. MADR2 maps to 18q21 and encodes a TGF-β-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996;86:543–52.

    Article  PubMed  CAS  Google Scholar 

  16. Riggins GJ, Thiagalingam S, Rozenblum E, Weinstein CL, Kern SE, Hamilton SR, et al. Mad-related genes in the human. Nat Genet 1996;13:347–9.

    Article  PubMed  CAS  Google Scholar 

  17. Hahn SA, Schutte M, Hoque ATMS, Moskaluk CA, de Costa LT, Rozenblum E, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996;271:350–3.

    Article  PubMed  CAS  Google Scholar 

  18. Graff JM, Bansal A, Melton DA. Xenopus Mad proteins transduce distinct subsets of signals for the TGF β superfamily. Cell 1996;85:479–87.

    Article  PubMed  CAS  Google Scholar 

  19. Liu F, Hata A, Baker JC, Doody J, Cárcamo J, Harland RM, et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature (Lond) 1996;381:620–3.

    Article  CAS  Google Scholar 

  20. Baker JC, Harland RM. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway, Genes Dev 1996;10:1880–9.

    Article  PubMed  CAS  Google Scholar 

  21. Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature (Lond) 1996;383:832–6.

    Article  CAS  Google Scholar 

  22. Zhang Y, Feng X-H, Wu R-Y, Derynck R. Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature (Lond) 1996;383:168–72.

    Article  CAS  Google Scholar 

  23. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, et al. Inactivation of the type II TGFβ receptor in colon cancer cells with microsatellite instability. Science 1995;268:1336–8.

    Article  PubMed  CAS  Google Scholar 

  24. Knaus PI, Lindemann D, DeCoteau JF, Perlman R, Yankelev H, Hille M, et al. A dominant inhibitory mutant of the type II transforming growth factor β receptor in the maligant progression of a cutaneous T-cell lymphoma. Mol Cell Biol 1996;16:3480–9.

    PubMed  CAS  Google Scholar 

  25. Kim IY, Ahn H-J, Zelner DJ, Shaw JW, Sensibar JA, Kim J-H, et al. Genetic change in transforming growth factor β (TGF-β) receptor type I gene correlates with insensitivity to TGF-β1 in human prostate cancer cells. Cancer Res 1996;56:44–8.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miyazono, K. et al. (1997). Transforming Growth Factor-β Receptors and Signal Transduction. In: Aono, T., Sugino, H., Vale, W.W. (eds) Inhibin, Activin and Follistatin. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1874-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1874-6_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7320-2

  • Online ISBN: 978-1-4612-1874-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics