Skip to main content

The Stationary Wavelet Transform and some Statistical Applications

  • Chapter
Wavelets and Statistics

Part of the book series: Lecture Notes in Statistics ((LNS,volume 103))

Abstract

Wavelets are of wide potential use in statistical contexts. The basics of the discrete wavelet transform are reviewed using a filter notation that is useful subsequently in the paper. A ‘stationary wavelet transform’, where the coefficient sequences are not decimated at each stage, is described. Two different approaches to the construction of an inverse of the stationary wavelet transform are set out. The application of the stationary wavelet transform as an exploratory statistical method is discussed, together with its potential use in nonparametric regression. A method of local spectral density estimation is developed. This involves extensions to the wavelet context of standard time series ideas such as the periodogram and spectrum. The technique is illustrated by its application to data sets from astronomy and veterinary anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich, F., Benjamini, Y.: Adaptive thresholding of wavelet coefficients, (submitted for publication ), (1994).

    Google Scholar 

  2. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B.57(1995), 289–300.

    MathSciNet  MATH  Google Scholar 

  3. Burman, R: A comparative study of ordinary cross-validation,v-fold cross-validation and the repeated learning-testing methods. Biometrika.76(1989), 503–514.

    MathSciNet  MATH  Google Scholar 

  4. Cohen, A., Daubechies, I., Jawerth, B., Vial, R: Multiresolution analysis, wavelets, and fast algorithms on an interval. Compt. Rend. Acad. Sci. Paris A.316(1993), 417–421.

    MathSciNet  MATH  Google Scholar 

  5. Coifman, R.R., Wickerhauser, M.V.: Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory.38(1992), 713–718.

    Article  MATH  Google Scholar 

  6. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Comms Pure Appl. Math.. 41 (1988), 909–996.

    Article  MathSciNet  MATH  Google Scholar 

  7. Daubechies, I.:Ten lectures on Wavelets. SIAM, (1992).

    Google Scholar 

  8. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Ass., (to appear).

    Google Scholar 

  9. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika,81(1994), 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  10. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., and Picard, D.: Wavelet shrinkage: asymptopia? (with discussion). J. R. Statist. Soc. B.57(1995), 301–369.

    MathSciNet  MATH  Google Scholar 

  11. Donoho, D.L.: Nonlinear solution of linear-inverse problems by wavelet-vaguelette decomposition. Technical Report 403, Department of Statistics, Stanford University, Stanford, (1992).

    Google Scholar 

  12. Fan, J., Hall, P., Martin, M., Patil, P.: Adaption to high spatial inhomogeneity based on wavelets and on local linear smoothing. Technical Report CMA-SR18- 93, Centre for Mathematics and Its Applications, Australian National University, Canberra, (1993).

    Google Scholar 

  13. Gao, H.-Y.: Wavelet estimation of spectral densities in time series analysis. PhD thesis, University of California, Berkeley. (1993).

    Google Scholar 

  14. Gao, H.-Y.: Choice of thresholds for wavelet estimation of the log spectrum. Technical 298 Report number 438, Department of Statistics, Stanford University. (1993).

    Google Scholar 

  15. Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise, (submitted for publication).

    Google Scholar 

  16. Kwong, M.K., Tang, P.T.P.: W-matrices, nonorthogonal multiresolution analysis, and finite signals of arbitrary length. Technical Report MCS-P449-0794, Argonne National Laboratory, (1994).

    Google Scholar 

  17. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattn Anal. Mach. Intell.11(1989), 674–693.

    Article  MATH  Google Scholar 

  18. Meyer, Y.:Wavelets and Operators. Cambridge University Press, Cambridge, (1992).

    MATH  Google Scholar 

  19. Nason, G.P.: The WaveThresh package; wavelet transform and thresholding software for S. Available from the StatLib archive, (1993).

    Google Scholar 

  20. Nason, G.P.: Wavelet function estimation using cross-validation, (submitted for publication), (1994).

    Google Scholar 

  21. Nason, G.P.: Wavelet regression by cross-validation. Technical Report 447, Department of Statistics, Stanford University, Stanford, (1994).

    Google Scholar 

  22. Nason, G.P., Silverman, B.W.: The discrete wavelet transform in S. Journal of Computational and Graphical Statistics,3(1994), 163–191.

    Article  Google Scholar 

  23. Neumann, M.H., Spokoiny, V.G.: On the efficiency of wavelet estimators under arbitrary error distributions. The IMS Bulletin,23(1994) 218.

    Google Scholar 

  24. Ogden, R.T.: Wavelet thresholding in nonparametric regression with change point applications. PhD thesis, Texas A&M University, (1994).

    Google Scholar 

  25. Pesquet, J.C., Krim, H., Carfantan, H.: Time invariant orthonormal wavelet representations. (1994). (submitted for publication)

    Google Scholar 

  26. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.:Numerical Recipes in C, the Art of Scientific Computing. Cambridge University Press, Cambridge, (1992).

    MATH  Google Scholar 

  27. Priestley, M.B.:Spectral Analysis and Time Series. Academic Press, London, (1981).

    MATH  Google Scholar 

  28. Rioul, O., Vetterli, M.: Wavelets and signal processing. IEEE Signal Processing Magazine,8,4(1991), 14–38.

    Article  Google Scholar 

  29. von Sachs, R., Schneider, K.: Wavelet smoothing of evolutionary spectra by non-linear thresholding. Technical report, University of Kaiserslautern.

    Google Scholar 

  30. Smith, M.J.T., Barnwell, T.P.: Exact reconstruction techniques for tree-structured subband coders. IEEE Transactions on Acoustics, Speech and Signal Processing.34(1986), 434–441.

    Article  Google Scholar 

  31. Stein, C.: Estimation of the mean of a multivariate normal distribution. Ann. Statist.,9(1981), 1135–1151.

    Article  MathSciNet  MATH  Google Scholar 

  32. Stone, M.: Cross-validatory choice and assessment of statistical predictions (with discussion). J. R. Statist. Soc. B,36(1974), 111–147.

    MATH  Google Scholar 

  33. Taswell, C., McGill, K.C.: Wavelet transform algorithms for finite duration discrete- time signals. Technical Report Numerical Analysis Project Manuscript NA-91-07, Department of Computer Science, Stanford University, (1991).

    Google Scholar 

  34. Vaidyanathan, P.P.: Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial. Proceedings of the IEEE, 78 (1990), 56 - 93.

    Article  Google Scholar 

  35. Vidakovic, B. Nonlinear wavelet shrinkage with Bayes rules and Bayes factors, (submitted for publication), (1994).

    Google Scholar 

  36. Wang, Y.: Function estimation via wavelets for data with long-range dependence. Technical Report, Univeristy of Missouri, Columbia, (1994).

    Google Scholar 

  37. Weyrich, N., Warhola, G.T.: De-noising using wavelets and cross-validation. Technical Report AFIT/EN/TR/94-01, Department of Mathematics and Statistics, Air Force Institute of Technology, AFIT/ENC, 2950 P ST, Wright-Patterson Air Force Base, Ohio, 45433–7765, (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York

About this chapter

Cite this chapter

Nason, G.P., Silverman, B.W. (1995). The Stationary Wavelet Transform and some Statistical Applications. In: Antoniadis, A., Oppenheim, G. (eds) Wavelets and Statistics. Lecture Notes in Statistics, vol 103. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2544-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2544-7_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94564-4

  • Online ISBN: 978-1-4612-2544-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics