Skip to main content

Functional and Evolutionary Implications of Peripheral Diversity in Lateral Line Systems

  • Chapter
The Evolutionary Biology of Hearing

Abstract

Any treatise on the evolution of hearing inevitably raises the possibility that the vertebrate auditory system has evolved from the mechanosensory lateral line system known to exist in the earliest vertebrates. The arguments for (van Bergeijk 1967; Jørgensen 1989) and against (Wever 1976; Northcutt 1981) this “octavolateralis” hypothesis, first proposed by Ayers (1892), have depended primarily on anatomical and developmental comparisons between the two systems. It is questionable whether this issue can or ever will be resolved, but the frequency with which it has been addressed in the past and is currently being addressed in this volume (Popper, Piatt, and Edds, Chapter 4; Fritzsch, Chapter 18) testifies to the fascination it holds for anyone interested in the evolution of ears and hearing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif H, Hassan ES and C von Campenhausen (1990) Sensory performance of blind mexican cave fish after destruction of the canal neuromasts. Naturwissenschaften 77:237–239.

    PubMed  CAS  Google Scholar 

  • Allis EP (1889) The anatomy and development of the lateral line system in Amia calva. J Morphol 2 (3):463–542.

    Google Scholar 

  • Allis EP (1895) The cranial muscle and first spinal nerves in Amia calva. J Morphol 12:489–808.

    Google Scholar 

  • Applebaum S, Schemmel C (1983) Dermal sense organs and their significance in the feeding behavior of the common sole Solea vulgaris. Mar Ecol Prog Ser 13:29–36.

    Google Scholar 

  • Ayers H (1892) Vertebrate cephalogenesis. J Morp 6:1–360.

    Google Scholar 

  • Barry MA, Bennett MVL (1989) Specialized lateral line receptor systems in elasmobranchs: The spiracular organs and vesicles of savi. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 591–606.

    Google Scholar 

  • von Bartheld CS, (1990) Development and innervation of the Paratympanic Organ (Vitali organ) in chick embryos. Brain Behav Evol 35:1–15.

    Google Scholar 

  • van Bergeijk WA (1964) Directional and non-directional hearing in fish. In: Tavolga WN (ed) Marine Bio-acoustics. Oxford: Pergamon Press, pp. 199–281.

    Google Scholar 

  • van Bergeijk WA (1967) The evolution of vertebrate hearing. In: Neff WD (ed) Contributions to Sensory Physiology. New York: Academic Press, pp. 1–49.

    Google Scholar 

  • Best A, Gray J (1982) Nerve fibre and receptor counts in the sprat utriculus and lateral line. J Mar Biol Assoc UK 62:201–213.

    Google Scholar 

  • Blaxter J, Denton E, Gray J (1981) Acoustico-lateralis system in clupeoid fishes. In: Tavolga W, Popper A, Fay R (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 39–60.

    Google Scholar 

  • Blaxter JHS, Gray JAB, Best ACG (1983) Structure and development of the free neuromasts and lateral line system of the herring. J Mar Biol Assoc UK 63:247–260.

    Google Scholar 

  • Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J Comp Phys 140:163–172.

    Google Scholar 

  • Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line organs of the topminnow Aplocheilus lineatus. Naturwissenschaften 68:624–625.

    Google Scholar 

  • Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface-feeding fish Aplocheilus lineatus—A prerequisite for prey localization. J Comp Phys 143:485–490.

    Google Scholar 

  • Bleckmann H, Tittel G, Blubaum-Gronau E (1989) The lateral line system of surface feeding fish: Anatomy, physiology and behavior. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 501–526.

    Google Scholar 

  • Bodenstein E (1882) Der Seitenkanal von Cottus gobio. Z Wiss Zool 37:121–145.

    Google Scholar 

  • Boyle R, Highstein SM (1990) Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurosci 10:1557–1569.

    PubMed  CAS  Google Scholar 

  • Bullock TH (1974) An essay on the discovery of sensory receptors and the assignment of their functions together with an introduction to electroreceptors. In: Fessard A (ed) Handbook of Sensory Physiology, Vol. III/3. New York: Springer-Verlag, pp. 1–12.

    Google Scholar 

  • Bullock TH, Northcutt RG, Bodznick D (1982) Evolution of electroreception. Trends Neurosci 5:50–53.

    Google Scholar 

  • Bullock TH, Bodznick D, Northcutt RG (1983) The phylogenetic distribution of electroreception: Evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46.

    Google Scholar 

  • Chapman CJ, Hawkins AD (1973) A field study of hearing in the cod, Gadus morhua L. J Comp Physiol 85:147–167.

    Google Scholar 

  • Chapman CJ, Sand O (1974) Field studies of hearing in two species of flatfish, Pleuronectes platessa (L.) and Limanda limanda (L.) (Family Pleuronectidae). Comparative Biochemistry and Physiology 47A:371–385.

    Google Scholar 

  • Coombs S, Janssen J, Webb J (1988) Diversity of lateral line systems: Evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 553–593.

    Google Scholar 

  • Coombs S, Janssen J (1989) Peripheral processing by the lateral line system of the mottled sculpin (Cottus bairdi). In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 299–319.

    Google Scholar 

  • Coombs S, Janssen J (1990) Water flow detection by the mechanosensory lateral line. In: Stebbins WE, Berkley MA (eds) Comparative Perception—Vol. II: Complex Signals, pp. 89–123.

    Google Scholar 

  • Coombs S, Janssen J. Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A (in press).

    Google Scholar 

  • Cooper JE, Kuehne RA (1974) Speoplatyrhinus poulsoni, a new genus and species of subterranean fish from Alabama. Copeia 486–493.

    Google Scholar 

  • Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. J Physiol 306:79–125.

    PubMed  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1982) The rigidity offish and patterns of lateral line stimulation. Nature 297:679–681.

    PubMed  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond B 218:1–26.

    PubMed  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral lines of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 595–617.

    Google Scholar 

  • Denton EJ, Gray JAB (1989) Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 229–246.

    Google Scholar 

  • Dercum F (1880) The lateral sensory apparatus of fishes. Proc Acad Nat Sei. Philadelphia, 152–154.

    Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biological Reviews 38:51–105.

    PubMed  CAS  Google Scholar 

  • Disler N (1960) Lateral line sense organs and their importance in fish behavior. Acad. Sei. USSR Severt-sov Institute of Animal Morphology (translated from Russian: Israel Program for Scientific Translations, Jerusalem, 1971. U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22151).

    Google Scholar 

  • Disler NN, Smirnov SA (1977) Sensory organs of the lateral-line canal system in two percids and their importance in behavior. J Fish Res Board Can 34: 1492–1503.

    Google Scholar 

  • Elepfandt A (1989) Wave analysis by amphibians. In: Coombs S, Görner P, Münz H (eds) The Mechanosen-sory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 527–541.

    Google Scholar 

  • Elepfandt A, Seiler B, Aicher B (1985) Water wave frequency discrimination in the clawed frog, Xenopus laevis. J Comp Physiol A 157:255–261.

    Google Scholar 

  • Enger P (1966) Acoustic threshold in goldfish and its relation to the sound source distance. Comp Biochem Physiol 18:859–868.

    PubMed  CAS  Google Scholar 

  • Enger P, Andersen R (1967) An electrophysiological field study of hearing in fish. Comp Biochem Physiol 1967(22):517–525.

    Google Scholar 

  • Enger P, Kalmijn AJ, Sand O (1989) Behavioral identification of lateral line and inner ear function. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 575–587.

    Google Scholar 

  • Fänge R, Larsson A, Lidman U (1972) Fluids and jellies of the acousticolateralis system in relation to body fluids in Corphaenoides rupestris and other fishes. Mar Biol 17:180–185.

    Google Scholar 

  • Fay RR (1969b) Behavioral audiogram for the goldfish. J Aud Res 9:112–121.

    Google Scholar 

  • Fay RR (1978) Coding of information in single auditory-nerve fibers of the goldfish. J Acoust Soc Am 63(1): 136–146.

    PubMed  CAS  Google Scholar 

  • Fay RR (1981) Coding of acoustic information in the eighth nerve. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. Berlin: Springer-Verlag, pp. 189–222.

    Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR, Ream TJ (1986) Acoustic response and tuning in saccular nerve fibers of the goldfish (Carassius auratus). J Acoust Soc Am 79 (6): 1883–1895.

    PubMed  CAS  Google Scholar 

  • Fernholm B (1985) The lateral line system of cyclo-stomes. In: Forman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary Biology of Primitive Fishes. New York: Plenum Press, pp. 113–122.

    Google Scholar 

  • Flock Å (1967) Ultrastructure and function in the lateral line organs. In: Cahn PH (ed) Lateral Line Detectors. Bloomington: Indiana University Press, pp. 163–197.

    Google Scholar 

  • Fritzch B (1989) Diversity and regression in the amphib-ian lateral line and electrosensory system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 99–114.

    Google Scholar 

  • Görner P, Kalmijn AJ (1989) Frequency response of lateral-line neuromasts in the thornback ray (Platyrhinoidis triseriata). In: Erber J, Menzel R, Pfluger H, Todt D (eds) Neural Mechanisms of Behavior. Stutt-gart/NewYork: Georg Thieme/Verlag, p. 82.

    Google Scholar 

  • Görner P, Mohr C (1989) Stimulus localization in Xenopus: The role of directional sensitivity of lateral line stitches. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 543–560.

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and Panglossian paradigm: A critique of the adaptationist programme. Proc R Soc Lond B 205: 581–598.

    PubMed  CAS  Google Scholar 

  • Graham-Smith W (1978) On the lateral lines and dermal bones in the parietal region of some crossopterygian and dipnoan fishes. R Soc Lond Philos Trans Biol Sei 282:41–105.

    Google Scholar 

  • Gray JAB (1984) Interaction of sound pressure and particle acceleration in the excitation of the later-line neuromasts of sprats. Proceedings of the Royal Society of London B 220:299–325.

    Google Scholar 

  • Hama K (1978) A study of the fine structure of the pit organ of the common Japanese sea eel Conger myri-aster. Cell Tissue Res 189:375–388.

    PubMed  CAS  Google Scholar 

  • Hassan ES (1985) Mathematical analysis of the stimulus for the lateral line organ. Biological Cybernetics 52:23–36.

    PubMed  CAS  Google Scholar 

  • Hassan ES (1986) On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). J Comp Physiol A 159:701–710.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1985) Hearing range of the domestic cat. Hear Res 19:85–88.

    PubMed  CAS  Google Scholar 

  • Herrick CJ (1901) The cranial nerves and cutaneous sense organs of the North American siluroid fishes. J Comp Neurol 11:177–249.

    Google Scholar 

  • Hoyt RD (1972) Anatomy and osteology of the cephalic lateral line system of the silverjaw minnow, Ericymba buccata. Copeia 1972:812–816.

    Google Scholar 

  • Jakubowski M (1967) Cutaneous sense organs of fishes. VIII. The structure of the system of lateral-line canal organs in the Percidae. Acta Biol Cracov Ser Zool 10:69–81.

    Google Scholar 

  • Jakubowski M (1974) Structure of the lateral line canal system and related bones in the berycoid fish Hoplo-stethus mediterraneus Cuv. et Val. (Trachichthyidae, Pisces). Acta Anat 87:261–274.

    PubMed  CAS  Google Scholar 

  • Janssen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behavior and Evolution 30: 210–229.

    CAS  Google Scholar 

  • Jielof R, Spoor A, De Vries HL (1952) The microphonic activity of the lateral line. J Physiol 116:137–157.

    PubMed  CAS  Google Scholar 

  • Jones WR, Janssen J (1990) Lateral line development and feeding behavior in the mottled sculpin (Cottus bairdi). Abstracts of the Thirteenth Midwinter Research Meeting, Association for Research in Otolaryngology.

    Google Scholar 

  • Jørgensen J (1989) Evolution of octavolateralis sensory cells. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 115–145.

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 83–130.

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner-ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 187–215.

    Google Scholar 

  • Kapoor AS (1964) Functional morphology of latero-sensory canals in the Notopteridae (Pisces). Acta Zool Stockh 65:77–91.

    Google Scholar 

  • Kapoor AS (1970) Development of dermal bones related to sensory canals of the head in the fishes Ophicephalus punctatus Bloc (Ophicephalidae) and Wallago attu Bl. and Schn. (Siluridae). Zool J. Linn Soc 49:69–97.

    Google Scholar 

  • Kelly J, van Netten S (1991) Topography and mechanics of the cupula in the fish lateral line. I. Variation of Cupulan Structure and composition in three dimensions. J Morph 207:23–36.

    CAS  Google Scholar 

  • Kiang N (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: MIT Press, 154 pp.

    Google Scholar 

  • Kirk K (1984) Water flows produced by Daphnia and Diaptomus: Implications for prey selection by mechanosensory predators. Limnol Oceanogr 30(3): 679–686.

    Google Scholar 

  • Knox R (1925) On the theory of the 6th sense in fishes. Edinburgh J Sei 2:12.

    Google Scholar 

  • Kroese ABA, van Netten SM (1989) Sensory transduction in lateral line hair cells. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 265–284.

    Google Scholar 

  • Kroese ABA, Schellart NAM (1987) Evidence for velocity-and acceleration-sensitive units in the trunk lateral line of the trout. J Physiol 394:13.

    Google Scholar 

  • Kroese ABA, Van der Zalm JM, Van den Bereken J (1978) Frequency response of the lateral-line organ of Xenopus laevis. Pflugers Archives 375:167–175.

    CAS  Google Scholar 

  • Kuiper JW (1956) The microphonic effect of the lateral line organ. PhD Thesis, University of Groningen, The Netherlands.

    Google Scholar 

  • Kuiper JW (1967) Frequency characteristics and functional significance of the lateral line organ. In: Cahn PH (ed) Lateral Line Detectors. Bloomington: Indiana University Press, pp. 105–122.

    Google Scholar 

  • Lekander B (1949) The sensory line system and the canal bones in the head of some Ostariophysi. Acta Zool(Stockh) 30:1–131.

    Google Scholar 

  • Liff H, Shamres S (1972) Structure and motion of cupulae of lateral line organs in Necturus maculosus. III. A technique for measuring the motion of free-standing lateral line cupulae. Quarterly Progress Report. Research Laboratory of Electronics, Massachusetts Institute of Technology 204:331–336.

    Google Scholar 

  • Lannoo M (1987a) Neuromast topography in urodele amphibians. J Morph 191:247–263.

    Google Scholar 

  • Lannoo M (1987b) Neuromast topography in anuran amphibians. J Morph 191:115–129.

    Google Scholar 

  • Leydig F (1850) Uber die schleimkanale der knochenfische. Mull Arch Anat Physiol 170–181.

    Google Scholar 

  • Leydig F (1851) Uber die nervenknopfe in den schleimkanalen von Lepidoleprus, Umbrina und Corvina. Mull Arch Anat Physiol 235–240.

    Google Scholar 

  • Makushok VM (1961) Some peculiarities in the structure of the seismosensory system of the northern Blenniids (Stichaeoidae, Blennoideii, Pisces). Tr Inst Okeanol Akad Nauk USSR 43:225–269.

    Google Scholar 

  • Marshall NB (1965) Systematic and biological studies of the macrourid fishes (Anacanthini-teleostei). Deep-SeaRes 12:299–322.

    Google Scholar 

  • Marshall NB (1971) Explorations in the Life of Fishes. Cambridge: Harvard University Press, p. 204.

    Google Scholar 

  • Marshall NJ (1986) Structure and general distribution of free neuromasts in the black goby, Gobius niger. J Mar Biol Assoc UK 66:323–333.

    Google Scholar 

  • Mayser P (1881) Vergleichend anatomische Studien über das Gehirn der Knochenfische mit besonderer Berück-sichtigung der Cyprinoiden. Z Wiss Zool 36: 259–364.

    Google Scholar 

  • McCormick C (1982) The organization of the octavo-lateralis area in actinopterygian fishes: A new interpretation. J Morphol 171:159–181.

    Google Scholar 

  • McCormick C (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 341–364.

    Google Scholar 

  • Megela AL (1984) Diversity of adaptation patterns in responses of eighth nerve fibers in the bullfrog, Rana catesbeiana. J Acoust Soc Am 75(4): 1155–1162.

    PubMed  CAS  Google Scholar 

  • Megela Simmons A, Moss CF, Daniel KM (1985) Behavioral audiograms of the bullfrog (Rana catesbeiana) and the green tree frog (Hyla cinerea). J Acoust Soc Amer 78:1236–1244.

    CAS  Google Scholar 

  • Merkel F (1880) Uber die endigungen der sensiblen nerven in der haut der Wirbeltiere. Rostock.

    Google Scholar 

  • Merrilees M, Crossman E (1973a) Surface pits in the family Esociadae. I. Structure and Types. J Morphol 141 (3):321–343.

    Google Scholar 

  • Merrilees M, Crossman E (1973b) Surface pits in the family Esociadae. II. Epidermal-dermal interaction and evidence for aplasia of the lateral line sensory system. J Morphol 141 (3):321–343.

    Google Scholar 

  • Metcalfe W (1989) Organization and development of the zebrafish posterior lateral line. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 147–159.

    Google Scholar 

  • Miller PJ, Wongrat P (1979) A new goby (Teleostei: Gobiidae) from the South China Sea and its significance for gobioid classification. Zool J Linn Soc 67:239–257.

    Google Scholar 

  • Montgomery JC, Macdonald JA (1987) Sensory tuning of lateral line receptors in Antarctic fish to the movements of planktonic prey. Science 235:195–196.

    PubMed  CAS  Google Scholar 

  • Montgomery JC, Macdonald JA, Housley GD (1988) Lateral line function in an antarctic fish related to the signals produced by plantonic prey. J Comp Physiol A 163:827–833.

    Google Scholar 

  • Montgomery JC (1989) Lateral line detection of plank-tonic prey. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 561–574.

    Google Scholar 

  • Moore F, Burris W (1956) Description of the lateral line system of the pirate perch, Aphredoderus Sayanus. Copeia 1956:18–20.

    Google Scholar 

  • Moy-Thomas JA, Miles RS (1971) Palaeozoic Fishes. Philadelphia: Saunders.

    Google Scholar 

  • Münz H (1979) Morphology and innervation of the lateral line system in Sarotherodeon niloticus L. J Comp Physiol A 157:555–568.

    Google Scholar 

  • Münz H (1985) Single unit activity in the peripheral lateral line system of the cichlid fish Sarotherodon niloticus L. J Comp Physiol A 157:555–568.

    Google Scholar 

  • Münz H (1986) What influences the development of canal and superficial neuromasts? Ann Kon Mus Mid Afr Zool Wetensch 251:85–89.

    Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 285–297.

    Google Scholar 

  • Myrberg AA, Jr, Spires JY (1980) Hearing in damsel-fishes: an analysis of signal detection among closely related species. J Comp Physiol 140:135–144.

    Google Scholar 

  • Nelson GJ (1972) Cephalic sensory canals, pitlines, and the classification of Esocoid fishes, with notes on Glaxiid and other teleosts. Am Mus Novit 2492: 1–49.

    Google Scholar 

  • van Netten SM, Kroese ABA (1987) Laser interferometric measurements on the dynamic behavior of the cupula of the fish lateral line. Hear Res 29:55–61.

    PubMed  Google Scholar 

  • van Netten SM, Kroese ABA (1989) Dynamic Behavior and Micromechanical Properties of the Cupula. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 247–263.

    Google Scholar 

  • Norris HW (1925) Observation upon the peripheral dis-tribution of the cranial nerves of certain ganoid fishes (Amia, Lepidosteus, Polyodon, Scaphirhynchus, and Acipenser). J Comp Neurol 39:345–432.

    Google Scholar 

  • Northcutt RC (1981) Audition and the central nervous system of fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 331–355.

    Google Scholar 

  • Northcutt RG (1988) Sensory and other neural traits and the adaptationist program: Mackerals of San Marco? In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York: Springer-Verlag, pp. 869–883.

    Google Scholar 

  • Northcutt RG (1989) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 17–78.

    Google Scholar 

  • O’Connell CP (1981) Development of organ systems in the northern anchovy, Engrauliis mordax and other teleosts. Am Zool 21:429–446.

    Google Scholar 

  • Oman C (1972) Structure and motion of cupuale of lateral line organs in Necturus maculosus. IV. Preliminary model for the dynamic response of the free-standing lateral line cupula, based on measurements of cupula stiffness. Quarterly Progress Report. Research Laboratory of Electronics, Massachusetts Institute of Technology 104:336–342.

    Google Scholar 

  • Parker GH (1904) The function of the lateral line organs in fishes. Bull US Bur Fish 24:185–207.

    Google Scholar 

  • Pehrson T (1945) The system of pit organ lines in Bym-narchus niloticus. Acta Zool 26:1–8.

    Google Scholar 

  • Pehrson T (1947) Some new interpretations of the skull in Polypterus. Acta Zool 28:400–454.

    Google Scholar 

  • Peters HM (1973) Anatomie und entwicklungsgeschichte des lateralissystems von Tilapia (Pisces, Cichlidae). Z Morphol Tiere 74:89–161.

    Google Scholar 

  • Peters RC, Buwalda JA (1986) The octavo-lateralis perception in lower aquatic vertebrates: Clustered versus dispersed sensor configurations. Netherlands Journal of Zoology 36 (3):381–392.

    Google Scholar 

  • Pollard HB (1892) The lateral line system in siluroids. Zool Jahrb [Anat] 5:525–551.

    Google Scholar 

  • Popper AN (1971) The effects of size on auditory capacities of the goldfish. J Aud Res 11:239–249.

    Google Scholar 

  • Popper AN, Coombs S (1980a) Acoustic Detection by Fishes. In: Ali MA (ed) Environmental Physiology of Fishes. New York: Plenum Press, pp. 403–430.

    Google Scholar 

  • Popper AN, Coombs S (1980b) Auditory mechanisms in teleost fishes: Significant variations in both hearing capabilities and auditory structures are found among species of bony fishes. American Scientist 68:429–440.

    Google Scholar 

  • Popper AN, Coombs S (1982) The morphology and evolution of the ear in Actinopterygian fishes. American Zoologist 22:311–328.

    Google Scholar 

  • Poulson T (1963) Cave adaption in amblyopsid fishes. Am Midi Nat 70:257–290.

    Google Scholar 

  • Poulson T (1985) Evolutionary reduction by neutral mutations: Plausibility arguments and data from albyopsid fishes and linyphid spiders. NSS Bulletin 47(2): 109–117.

    Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain, Behavior and Evolution 34:110–131.

    PubMed  CAS  Google Scholar 

  • Russell IJ (1976) Amphibian lateral line receptors. In: Llinas R, Precht W (eds) Frog Neurobiology. New York: Springer-Verlag, pp. 513–550.

    Google Scholar 

  • Sand O (1981) The Lateral Line and Sound Reception. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and Sound Communication in Fishes. New York: Springer-Verlag, pp. 459–580.

    Google Scholar 

  • Sand O, Karlsen HE (1986) Detection of infrasound by the Atlantic cod. J Exp Biol 125:197–204.

    PubMed  CAS  Google Scholar 

  • Schellart NAM, Kroese ABA (1989) Interrelationship of acousticolateral and visual systems in the teleost midbrain. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 421–443.

    Google Scholar 

  • Schemmel C (1967) Bergiechende Untersuchungen an den Hautsinnesorganen oberund unterirdisch lebender Astyanax Formen. Ein beitrag zur evolution der caver-nicolen. Z Morph Tiere 61:255–316.

    Google Scholar 

  • Schemmel C (1977) Zur morphologie und funktion der Sinnesorgane von Typhliasina pearsei (Hubbs) (Ophidioidea, Teleostei). Zoomorphologie, 87:191–202.

    Google Scholar 

  • Schulze FE (1870) Uber die Sinnesorgane der Seitenlinie bei fischen und amphibien. Arch Mikr Anat 6:62–88.

    Google Scholar 

  • de Sede P (1884) La Ligne laterale des poissons osseux. Rev Scient (Serie 3).

    Google Scholar 

  • Shelton PMJ (1970) The lateral line system at metamorphosis in Xenopus laevis (Daudin). J Embryol Exp. Morph 24(3):511–524.

    PubMed  CAS  Google Scholar 

  • Siler W (1969) Near- and farfields in a marine environment. J Acoust Soc Am 16 (3):483–484.

    Google Scholar 

  • Song J, and RG Northcutt (1991) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:10–37.

    PubMed  CAS  Google Scholar 

  • Stone L (1933) The development of lateral line sense organs in amphibians observed in living and vital stained preparations. J Comp Neurol 5:507–540.

    Google Scholar 

  • Swofford DL (1976) Genetic variability, population differentiation, and biochemical relationships in the family Amblyopsidae. Masters’ Thesis, Eastern Kentucky University (submitted 1982).

    Google Scholar 

  • Swofford DL, Branson BA, Sievert GA (1980) Genetic differentiation of cavefish populations (Amblyopsidae). Isozyme Bulletin 13:109–110.

    Google Scholar 

  • Topp G (1983) Primary lateral line response to water surface waves in the topminnow Aplocheilus Lineatus (Pisces, Cyprinodontidae). Pflugers Arch 397: 62–67.

    PubMed  CAS  Google Scholar 

  • Vischer H (1989) The development of lateral-line receptors in Eigenmannia teleostei, gymnotiformes). I. The mechanoreceptive lateral-line system. Brain Behav Evol 33:205–222.

    CAS  Google Scholar 

  • Vischer H (1989) The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). II. The electroreceptive lateral-line system. Brain Behav Evol 33:223–236.

    CAS  Google Scholar 

  • Webb JF (1989a) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line: Neurobiology and Evolution. New York: Springer-Verlag, pp. 79–97.

    Google Scholar 

  • Webb JF (1989b) Gross morphology and evolution of the mechanoreceptive lateral-line system in teleost fishes. Brain Behav Evol 33:34–53.

    PubMed  CAS  Google Scholar 

  • Wever EG (1976) Origin and evolution of the ear of vertebrates. In: Masterton RB, Bitterman ME, Campbell CBG, Hotton N (eds) Evolution of Brain and Behavior invertebrates. New Jersey: Lawrence Erlbaum Assoc, pp. 89–105.

    Google Scholar 

  • Wiley EO. Phylogenetic Relationships of the Percidae (Teleostei: Perciformes): A Preliminary Hypothesis. In: Mayden, RL (ed) Systematics, Historical Ecology and North American Freshwater Fishes. Stanford University Press (in press).

    Google Scholar 

  • Winklbauer R, Hausen P (1983a) Development of the lateral line system in Xenopus laevis. I. Normal development and cell movement in the supraorbital system. J Embryol Exp Morph 76:265–281.

    CAS  Google Scholar 

  • Winklbauer R, Hausen P (1983b) Development of the lateral line system in Xenopus laevis. II. Cell multiplication and organ formation in the supraorbital system. J Embryol Exp Morph 76:283–296.

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Hausen P (1985a) Development of the lateral line system in Xenopus laevis. III. Development of the supraorbital system in triploid embryos and larvae. J Embryol Exp Morph 88:183–192.

    PubMed  CAS  Google Scholar 

  • Winklbauer R, Hausen P (1985b) Development of the lateral line system in Xenopus laevis. IV. Pattern formation in the supraorbital system. J Embryol Exp Morph 88:193–207.

    PubMed  CAS  Google Scholar 

  • Wubbels R (1989) Afferent activity in the supra-orbital canal of the ruff lateral line. PhD Thesis, University of Groningen, The Netherlands.

    Google Scholar 

  • Wullimann MF, Senn DG (1981) Zur Morphologie der Lateralis-Innervation bei Mormyriden-Fischen (Brienomyrus spec. Taverne 1971, Mormyridae, Teleostei). Verh Naturforsch Ges Basl 92:63–72.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Coombs, S., Janssen, J., Montgomery, J. (1992). Functional and Evolutionary Implications of Peripheral Diversity in Lateral Line Systems. In: Webster, D.B., Popper, A.N., Fay, R.R. (eds) The Evolutionary Biology of Hearing. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2784-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2784-7_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7668-5

  • Online ISBN: 978-1-4612-2784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics