Skip to main content

Thermodynamic Properties of Minerals: Macroscopic and Microscopic Approaches

  • Chapter
Thermodynamic Data

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 10))

Abstract

Thermodynamic modeling of experimental or natural-phase equilibria has become an integral part of petrology. In this respect, the isobaric heat capacity (C p ) has manifold importance. First, C p data constitute the basis of third-law determinations of the entropy of minerals. Second, these data are needed to calculate the variation with temperature of the entropy, the enthalpy, and the Gibbs free energy. As a result, it necessary to know accurately heat capacities when retrieving thermodynamic information from phase equilibria data, especially when trying to separate the effects of the enthalpies and entropies of transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaogi, M., Ross, N.L., McMillan, P., and Navrotsky, A. (1984). The Mg2SiO4 polymorphs (olivine, modified spinel and spinel)-thermodynamic properties from oxide-melt solution calorimetry, phase relations, and model of lattice vibrations. Amer. Mineral 69, 499–512.

    Google Scholar 

  • Barron, T.H.K., Huang, C.C., and Pasternak, A. (1976). Interatomic forces and lattice dynamics of α-quartz J. Phys. C9, 3925–3940.

    Google Scholar 

  • Berman, R.G. (1988). Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J. Petrol 29, 445–522.

    Google Scholar 

  • Berman, R.G. and Brown, T.H. (1985). Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: Representation, estimation, and high-temperature extrapolation. Contrib. Mineral Petrol 89, 168–183.

    Article  Google Scholar 

  • Chang, Z.P. and Graham, E.K. (1977). Elastic properties of oxides in the NaCl structure. J. Phys. Chem. Solids 38, 1355–1362.

    Article  Google Scholar 

  • Chipman, J. and Fontana, M.G. (1935). A new approximate equation for heat capacities at high temperatures. J. Amer. Chem. Soc. 57, 48–51.

    Article  Google Scholar 

  • Chopelas, A. (1990). Thermal properties of forsterite at mantle pressures derived from vibrational spectroscopy. Phys. Chem. Mineral 17, 149–156.

    Google Scholar 

  • Counsell, J.F. and Martin, J.F. (1967). The entropy of tetragonal germanium dioxide. J. Chem. Soc. (A), 560–561.

    Google Scholar 

  • Deniélou, L., Fournier, Y., Petitet, J.P., and Téqui, C. (1971). Etude calorimétrique des sels entre 273°K et 1533°K. Technique et application aux sulfates alcalins. Rev. Int. tìautes Temp. Refract. 8, 119–126.

    Google Scholar 

  • Ditmars, D.A. and Douglas, T.B. (1971). Measurement of the relative enthalpy of pure α-Al2O3 (NBS heat capacity and enthalpy standard reference material No. 720) from 273 to 1173 K. J. Res. NBS 75A, 401–420.

    Google Scholar 

  • Ditmars, D.A., Ishihara, S., Chang, S.S., and Bernstein, G. (1982). Enthalpy and heat-capacity standard reference material synthetic sapphire (α-Al2O3) from 10 to 2250 K. J. Res. NBS 87, 159–163.

    Google Scholar 

  • Elcombe, M.M. (1967). Some aspects of the lattice dynamics of quartz. Proc. Roy. Soc. 91, 947–958.

    Article  Google Scholar 

  • Fei, Y. and Saxena, S.K. (1987). An equation for the heat capacity of solids. Geochim. Cosmochim. Acta. 51, 251–254.

    Article  Google Scholar 

  • Fiquet, G. (1990). Propriétés thermodynamiques des minéraux du manteau supérieur. Calorimétrie à haute temperature et spectroscopic Raman à haute pression et haute temperature. Ph.D. Thesis, University of Rennes I.

    Google Scholar 

  • Fyfe, W.S., Turner, F.J., and Verhoogen, J. (1958). Metamorphic reactions and metamor-phic facies. Geol. Soc. Amer. Mem. 75.

    Google Scholar 

  • Ghose, S. (1988). Inelastic neutron scattering. Rev. Mineral. 18, 161–192.

    Google Scholar 

  • Gillet, P., Reynard, B., and Téqui, C. (1989). Thermodynamic properties of glaucophane: New data from calorimetric and spectroscopic measurements. Phys. Chem. Miner. 16, 659–667.

    Google Scholar 

  • Gillet, P., Le Cléac’h, A., and Madon, M. (1990). High-temperature Raman spectroscopy of SiO2 and GeO2 polymorphs: Anharmonicity and thermodynamic properties at high temperatures J. Geophys. Res. 95, 21636–21655.

    Article  Google Scholar 

  • Gillet, P., Richet, P., Guyot, F., and Fiquet, G. (1991a). High-temperature thermodynamic properties of forsterite. J. Geophys. Res. 96, 11805–11816.

    Article  Google Scholar 

  • Gillet, P., Fiquet, G., Malézieux, J.M., and Geiger, C.A. (1991b). High-pressure and high-temperature Raman spectroscopy of end-member garnets: Pyrope, grossular and andradite. Eur. J. Mineral, (in press).

    Google Scholar 

  • Goto, T., Anderson, O.L., Ohno, I., and Yamamoto, S. (1989). Elastic constants of corundum up to 1825 K. J. Geophys. Res. 94, 7588–7602.

    Article  Google Scholar 

  • Grønvold, F. (1967). Adiabatic calorimeter for the investigation of reactive substances in the range from 25 to 775°C. Heat capacity of α-aluminum oxide. Acta Chem. Scand. 21, 1695–1713.

    Article  Google Scholar 

  • Grønvold, F., Stølen, S., and Svendsen, S.R. (1989). Heat capacity of α quartz from 298.15 to 847.3 K, and of β quartz from 847.3 to 1000 K-Transition behaviour and re-evaluation of the thermodynamic properties. Thermochimica Acta 139, 225–243.

    Article  Google Scholar 

  • Haas, J.L., Jr and Fisher, J.R. (1976). Simultaneous evaluation and correlation of thermodynamic data. Amer. J. Sci. 276, 525–545.

    Article  Google Scholar 

  • Helgeson, H.C., Delany, J.M., Nesbitt, H.W, and Bird, D.K. (1978). Summary and critique of the thermodynamic properties of rock-forming minerals. Amer. J. Sci. 278A, 1–229.

    Google Scholar 

  • Hemingway, B.S. (1987). Quartz: Heat capacities from 340 to 1000 K and revised values for the thermodynamic properties. Amer. Mineral. 72, 273–279.

    Google Scholar 

  • Hemley, R.J. (1987). Pressure dependence of Raman spectra of SiO2 polymorphs: α-quartz, coesite and stishovite, in High-Pressure Research in Mineral Physics, M.H. Manghnani and Y. Syono, eds., A.G.U. Washington, D.C., pp. 347–359.

    Google Scholar 

  • Hemley, R.J., Cohen, R.E., Yeganeh-Haeri, A., Mao, H.K., Weidner D.J., and Ito, E. (1989). Raman spectroscopy and lattice dynamics of MgSiO3 perovskite at high pressure, in Perovskite: a Structure of Great Interest to Geophysics and Materials Science, A. Navrotsky and D.J. Weidner, eds., A.G.U. Geophysical Monograph 45, Washington, D.C., pp. 35–44.

    Google Scholar 

  • Hofmeister, A.M. (1987). Single-crystal absorption and reflection infrared spectroscopy of forsterite and fayalite. Phys. Chem. Miner. 14, 499–513.

    Article  Google Scholar 

  • Hofmeister, A.M. and Chopelas, A. (1991). Thermodynamic properties of pyrope and grossular from vibrational spectroscopy. Amer. Mineral. 76, 880–891.

    Google Scholar 

  • Hofmeister, A.M., Hoering, T.C., and Vigro, D. (1987). Vibrational spectroscopy of beryllium aluminosilicates: Heat capacity calculations from bond assignment. Phys. Chem. Mineral 14, 205–224.

    Article  Google Scholar 

  • Holland, T.J.B. (1981). Thermodynamic analysis of simple mineral systems. Adv. Phys. Geochem. 1, 19–34.

    Google Scholar 

  • Holland, T.J.B. (1989). Dependence of entropy on volume for silicate and oxide minerals: A review and a predictive model. Amer. Mineral. 74, 5–13.

    Google Scholar 

  • Holm, J.L., Kleppa, O.J., and Westrum, E.F., Jr. (1967). Thermodynamics of polymorphic transformations in silica. Thermal properties from 5 to 1070°K and pressure-temperature stability fields for coesite and stishovite. Geochim. Cosmochim. Acta 31, 2289–2307.

    Article  Google Scholar 

  • Isaak, D.G., Anderson, O.L., Goto, T., and Suzuki, I. (1989a). Elasticity of single-crystal forsterite measured to 1700 K. J. Geophys. Res. 94, 5895–5906.

    Article  Google Scholar 

  • Isaak, D.G., Anderson, O.L., and Goto, T. (1989b). Measured elastic moduli of single-crystal MgO up to 1800 K. Phys. Chem. Mineral. 16, 704–713.

    Article  Google Scholar 

  • Jeanloz, R. (1980). Infrared spectra of olivine polymorphs: α, β phase and spinels. Phys. Chem. Mineral. 5, 327–341.

    Article  Google Scholar 

  • Kajiyoshi, K. (1986). High-temperature equation of state for mantle minerals and their anharmonic properties. M.S. thesis, Okayama Univ., Okayama, Japan (quoted by Isaak et al., 1989a).

    Google Scholar 

  • Kelley, K.K. (1960). Contribution to the data on theoretical metallurgy. XIII. High-temperature heat content, heat capacity, and entropy data for the elements and inorganic compounds. U.S. Bureau Mines Bull. 584.

    Google Scholar 

  • Kelley, K.K., Todd, S.S., Orr, L.R., King, E.G., and Bonnickson, K.R. (1953). Thermodynamic properties of sodium-aluminum silicates. U.S. Bureau Mines Rept. Inv. 4955.

    Google Scholar 

  • Kieffer, S.W. (1979). Thermodynamics and lattice vibrations of minerals: 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates. Rev. Geophys. Space Phys. 17, 827–849.

    Google Scholar 

  • Kieffer, S.W. (1980). Thermodynamics and lattice vibrations of minerals: 4. Application to chain and sheet silicates and orthosilicates. Rev. Geophys. Space Phys. 18, 862–886.

    Article  Google Scholar 

  • Kieffer, S.W. (1985). Heat capacity and entropy: Systematic relations to lattice vibrations. Rev. Mineral. 14, 65–126.

    Google Scholar 

  • Kittel, C. (1971). Introduction to Solid State Physics. Wiley, New York.

    Google Scholar 

  • Kopp, M. (1865). Investigation of the specific heat of solid bodies. Phil. Trans. Roy. Soc. Lond. 155, 71–202.

    Article  Google Scholar 

  • Krupka, K.M., Robie, R.A., and Hemingway, B.S. (1979). High-temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophillite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass. Amer. Mineral. 64, 86–101.

    Google Scholar 

  • Krupka, K.M., Robie, R.A., Hemingway, B.S., Kerrick, D.M., and Ito, J. (1985). Low-temperature heat capacities and derived thermodynamic properties of antophyllite, diopside, enstatite, bronzite, and wollastonite. Amer. Mineral. 70, 249–260.

    Google Scholar 

  • Lange, R.A., De Yoreo, J.J., and Navrotsky, A. (1991). Scanning calorimetric measurement of heat, capacity during incongruent melting of diopside. Amer. Mineral. 76, 904–912.

    Google Scholar 

  • Le Cléac’h, A. (1989). Contribution à l’étude des propriétés physiques des minéraux de haute pression. Mém. Docum. Centre Arm. et Struct. Socles 36, Rennes.

    Google Scholar 

  • McMillan, P.F. and Ross, N.L. (1987). Heat capacity calculations for A12O3 corundum and MgSiO3 ilmenite. Phys. Chem. Mineral. 14, 225–234.

    Article  Google Scholar 

  • Madon, M. and Price, G.D. (1989). Infrared spectroscopy of the polymorphic series (enstatite, ilmenite, and perovskite) of MgSiO3, MgGeO3, and MnGeO3. J. Geophys. Res. 94, 15687–15701.

    Article  Google Scholar 

  • Maier, C.G. and Kelley, K.K. (1932). An equation for the representation of high-temperature heat content data. J. Amer. Chem. Soc. 54, 3243–3246.

    Article  Google Scholar 

  • Mammone, T.F. and Sharma S.K. (1980). Pressure and temperature dependence of the Raman spectra of rutile structure oxides. Year Book, Carnegie Inst. Washington, 79, 369–373.

    Google Scholar 

  • Navrotsky, A. (1980). Lower mantle phase-transitions may generally have negative pres-sure-temperature slopes. Geophys. Res. Lett. 7, 709–711.

    Article  Google Scholar 

  • Newton, R.C. (1987). Thermodynamic analysis of phase-equilibria in simple mineral systems. Rev. Mineral. 17, 1–33.

    Google Scholar 

  • Perkins, D., Westrum, E.F. Jr., and Essene, E.J. (1980). The thermodynamic properties and phase relations of some minerals in the system CaO-Al2O3-SiO2-H2O. Geochim. Cosmochim. Acta 44, 61–84.

    Article  Google Scholar 

  • Price, G.D., Parker, S.C., and Leslie, M. (1987). The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Phys. Chem. Mineral. 15, 181–190.

    Article  Google Scholar 

  • Rao, K.R., Chaplot, S.L., Choudury, N., Ghose, S., Hastings, J.M., Corliss, L.M., and Price, D.L. (1988). Lattice dynamics and inelastic neutron scattering from forsterite, Mg2SiO4: Phonon dispersion relation, density of states and specific heat. Phys. Chem. Mineral. 16, 83–97.

    Article  Google Scholar 

  • Richet, P. (1990). GeO2 vs SiO2: Glass transitions and thermodynamic properties of polymorphs. Phys. Chem. Miner. 17, 79–88.

    Article  Google Scholar 

  • Richet, P. and Fiquet, G. (1991). High-temperature heat capacity and premelting of minerals in the system CaO-MgO-Al2O3-SiO2. J. Geophys. Res. 96, 445–456.

    Article  Google Scholar 

  • Richet, P., Bottinga, Y., Deniélou, L., Petitet, J.P., and Téqui, C. (1982). Thermodynamic properties of quartz, cristobalite and amorphous SiO2: Drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim. Cosmochim. Acta 46, 2639–2658.

    Article  Google Scholar 

  • Richet, P., Robie, R.A., Rogez, J., Hemingway, B.S., Courtial, P., and Téqui, C. (1990). Thermodynamics of open networks: Ordering and entropy in NaAlSiO4 glass, liquid, and polymorphs. Phys. Chem. Miner. 17, 385–394.

    Google Scholar 

  • Richet, P., Robie, R.A., and Hemingway, B.S. (1991a). Thermodynamic properties of wollastonite and CaSiO3 glass and liquid. Eur. J. Mineral 3, 475–484.

    Google Scholar 

  • Robie, R.A. and Hemingway, B.S. (1972). Calorimeters for heat of solution and low-temperature heat capacity measurements. U.S. Geol. Surv. Prof. Paper 755.

    Google Scholar 

  • Robie, R.A., Hemingway, B.S., and Fisher, J.R. (1979). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1452.

    Google Scholar 

  • Robie, R.A., Hemingway, B.S., Gillet, P., and Reynard, B. (1991). On the entropy of glaucophane Na2Mg3Al2Si8O22(OH)2. Contrib. Mineral Petrol 107, 484–486.

    Article  Google Scholar 

  • Robinson, G.R. and Haas, J.L., Jr., (1983). Heat capacity, relative enthalpy, and calorimetric entropy of silicate minerals: An empirical method of prediction. Amer. Mineral 68, 541–553.

    Google Scholar 

  • Ross, N.L., Akaogi, M., Navrotsky, A., Susaki, J.I., and McMillian, P. (1986). Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): Studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. J. Geophys. Res. 91, 4685–4696.

    Article  Google Scholar 

  • Salje, E. and Werneke, C.H. (1982). The phase equilibrium between sillimanite and andalusite as determined from lattice vibrations. Contrib. Mineral Petrol 79, 56–67.

    Article  Google Scholar 

  • Saxena, S.K. (1988). Assessment of thermal expansion, bulk modulus, and heat capacity of enstatite and forsterite. J. Phys. Chem. Solids 49, 1233–1235.

    Article  Google Scholar 

  • Saxena, S.K. (1989). Assessment of bulk modulus, thermal expansion and heat capacity of minerals. Geochim. Cosmochim. Acta 53, 785–789.

    Article  Google Scholar 

  • Slater, J.C. (1939). Introduction to Chemical Physics. McGraw Hill, New York.

    Google Scholar 

  • Smith, D.K. and Leider, H.R. (1968). Low-temperature thermal expansion of LiH, MgO and CaO. J. Appl. Cryst. 1, 246–249.

    Article  Google Scholar 

  • Suzuki, I., Takei, H., and Anderson, O.L. (1984). Thermal expansion of forsterite, Mg2SiO4, in Proceedings of 8th International Thermal Expansion Conference, T.A. Hahn, ed. Plenum, New York, pp. 79–88.

    Google Scholar 

  • Watanabe, H. (1982). Thermochemical properties of synthetic high-pressure compounds relevant to the Earth’s mantle, in High-Pressure Research in Geophysics, S. Akimoto and M.H. Manghnani, eds., Reidel, Dordrecht, pp. 441–464.

    Google Scholar 

  • White, W.P. (1919). Silicate specific heats. Second series. Amer. J. Sci. 47, 1–43.

    Article  Google Scholar 

  • Wood, B.J. (1981). Crystal-field electronic effects on the thermodynamic properties of Fe2+ minerals. Adv. Phys. Geochem. 1, 63–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Richet, P., Gillet, P., Fiquet, G. (1992). Thermodynamic Properties of Minerals: Macroscopic and Microscopic Approaches. In: Saxena, S.K. (eds) Thermodynamic Data. Advances in Physical Geochemistry, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2842-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2842-4_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7692-0

  • Online ISBN: 978-1-4612-2842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics