Skip to main content

Microelectrophoresis Applied to the Surface Chemistry of Clay Minerals

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 14))

Abstract

Microelectrophoresis has been used for more than 60 years to study the behavior of aluminosilicate clays, yet there is still widespread disagreement concerning the ability of this simple measurement to describe the nature of the aqueous/solid interface. The disagreement stems from questions regarding the validity of the equations used to transform the measured property, electrophoretic mobility (µ), into the zeta potential (ζ). In electrophoresis, ζ is the average electrostatic potential at the shear plane between a hydrated particle moving in response to an electric field and the stationary water through which the particle moves. To make the mathematical analysis of the forces involved in electrophoresis tractable, the shear plane must be defined as an imaginary plane separating the hydration sheath of the moving particle from the bulk water in which it is moving (Hunter, 1981).

Department of Agronomy and Soils, College of Agriculture and Home Economics Research Center Washington State University, Pullman, WA 99164–6420. Project 0385.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagchi, P., B.V. Gray, and S.M. Birnbaum. 1979. Preparation of model poly(vinyl toluene) latices and characterization of their surface charge by titration and electrophoresis. J. Colloid Interface Sci. 69: 502–508.

    Article  CAS  Google Scholar 

  • Barclay, L.M., and R.H. Ottewill. 1970. The measurement of forces between colloidal particles. Spec. Disc. Faraday Soc. 1: 138–147.

    CAS  Google Scholar 

  • Bar-On, P., and I. Shainberg. 1970. Hydrolysis and decomposition of Na-montmorillonite leached with distilled water. Soil Sci. 109: 241–246.

    Article  CAS  Google Scholar 

  • Bar-On, P., I. Shainberg, and I. Michaeli. 1970. Electrophoretic of montmorillonite particles saturated with Na/Ca ions. J. Colloid Interface Sci. 33: 471–472.

    Article  CAS  Google Scholar 

  • Barshad, I. 1960. The effect of the total chemical composition and crystal structure of soil minerals on the nature of the exchange cation in acidified clays and in naturally occurring acid soils. Int. Congr. Soil Sci., Trans. 7th ( Madison, WI ) I I: 435–444.

    Google Scholar 

  • Barshad, I., and A.E. Foscolos. 1970. Factors affecting the rate of the interchange reaction of adsorbed H’ on the 2:1 clay minerals. Soil Sci. 110: 52–60.

    Article  CAS  Google Scholar 

  • Bolt, G.H., and R.D. Miller. 1955. Compression studies of illite suspensions. Soil Sci. Soc. Amer. Proc. 19: 285–288.

    Article  CAS  Google Scholar 

  • Booth, E. 1951. The cataphoresis of spherical fluid droplets in electrolytes. J. Chem. Phys. 19: 1331–1336.

    Article  CAS  Google Scholar 

  • Bruggenwert, M.G.M., and A. Kamphorst. 1982. Survey of experimental information on cation exchange in soil systems. In Bolt, G.H. and M.G.M. Bruggenwert (eds.). Soil Chemistry: Part B. Physicochemical Models. Elsevier, Amsterdam.

    Google Scholar 

  • Callaghan, I.C., and R.H. Ottewill. 1974. Interparticle forces in montmorillonite gels. Faraday Disc. Chem. Soc. 57: 110–118.

    CAS  Google Scholar 

  • Carnie, S.L., and G.M. Tonie. 1984. The statistical mechanics of the electrical double layer. Adv. Chem. Phys. 56: 141–253.

    Article  CAS  Google Scholar 

  • Chan, D.Y.C., R.M. Pashley, and J.P. Quirk. 1984. Surface potentials derived from co-ion exclusion measurements on monoionic montmorillonite and illite. Clays Clay Miner 32: 131–138.

    Article  CAS  Google Scholar 

  • Clark, C.J., and M.B. McBride. 1984. Cation and anion retention by natural and synthetic allophone and imogolite. Clays Clay Miner. 32: 291–299.

    Article  CAS  Google Scholar 

  • Cradwick, P.D.G., V.C. Farmer, J.D. Russell, C.R. Masson, K. Wada, and N. Yoshinaga. 1972. Imogolite, a hydrated aluminum silicate of tubular structure. Nature 240: 187–189.

    Article  CAS  Google Scholar 

  • Delgado, A., E Gonzalez-Caballero, and J.M. Bruque. 1985. On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solution. J. Colloid Interface Sci. 113: 203–211.

    Article  Google Scholar 

  • Eversole, W.G., and W.W. Boardman. 1941. The effect of electrostatic forces on electrokinetic potentials. J. Chem. Phys. 9: 798–801.

    Article  CAS  Google Scholar 

  • Friend, J.P., and R.J. Hunter. 1970. Vermiculite as a model system in the testing of double layer theory. Clays Clay Miner. 18: 275–283.

    Article  CAS  Google Scholar 

  • Goff, J.R., and P. Luner. 1984. Measurement of colloid mobility by laser Doppler electrophoresis: The effect of salt concentration on particle mobility. J. Colloid Interface Sci. 99: 468–483.

    Article  CAS  Google Scholar 

  • Harsh, J.B., H.E. Doner, and D.W. Fuerstenau. 1988a. Electrophoretic mobility of hydroxy-aluminum-and sodium-hectorite in aqueous solutions. Soil Sci. Soc. Amer. J. 52: 1589–1592.

    Article  CAS  Google Scholar 

  • Harsh, J.B., Y. Yang, J. Boyle, and T. Murarik. 1988b. Surface complex formation between sodium and noncrystalline aluminosilicates. Agron. Abst. p. 198.

    Google Scholar 

  • Horikawa, I., R.S. Murray, and J.P. Quirk. 1988. The effect of electrolyte concentration on the zeta potentials of homoionic montmorillonite and illite. Colloids Surf. 32: 181–195.

    Article  CAS  Google Scholar 

  • Hunter, R.J. 1962. The calculation of zeta potential from mobility measurements. J. Phys. Chem. 66: 1367–1368.

    Article  CAS  Google Scholar 

  • Hunter, R.J. 1966. The interpretation of electrokinetic potentials. J. Colloid Interface Sci. 22: 213–239.

    Article  Google Scholar 

  • Hunter, R.J. 1981. Zeta Potential in Colloid Science. Academic Press, New York.

    Google Scholar 

  • Hunter, R.J., and A.E. Alexander. 1963. Surface properties and flow behavior of kaolinite. Part I: Electrophoretic mobility and stability of kaolinite sols. J. Colloid Sci. 18: 820–832.

    Article  CAS  Google Scholar 

  • Hunter, R.J., and J.V. Leyendekkers. 1978. Viscoelectric coefficient for water. J. Chem. Soc. Faraday 1 74: 450–455.

    Google Scholar 

  • Low, P.F. 1958. Movement and equilibrium of water and soil systems as affected by soil-water forces. InWater and Its Conduction by Soils. pp. 55–64. Nat. Acad. Sci.-Natl. Research Council, Special Report 40, Highway Research Board, Washington, D.C.

    Google Scholar 

  • Low, P.F. 1976. Viscosity of interlayer water in montmorillonite. Soil Sci. Soc. Amer. J. 44: 667–676.

    Article  Google Scholar 

  • Low, P.F. 1981 The swelling of clay III: Dissociation of exchangeable cations. Soil Sci. Soc. Am. J. 45: 1074–1078.

    Article  CAS  Google Scholar 

  • Low, P.F. 1987. The clay-water interface. Proc. Intematl. Clay Conf., Denver, 1985. pp. 247–256.

    Google Scholar 

  • Lyklema, J. 1977. Water at interfaces: A colloid-chemical approach. J. Colloid Interface Sci: 58: 242–250.

    Article  CAS  Google Scholar 

  • Lyklema, J., and J. Th. G. Overbeek. 1961. On the interpretation of electrokinetic potentials. J. Colloid Sci. 16: 501–512.

    Article  CAS  Google Scholar 

  • Lyons, J.S., D.N. Fourlong, and T.W. Healy. 1981. The electrical double-layer properties of the mica (muscovite)-aqueous electrolyte interface. Aust. J. Chem. 34: 1177–1187.

    Article  CAS  Google Scholar 

  • Ma, C.M., F.J. Micale, M.S. El-Aasser, and J.W. Vanderhoff. 1981. In D.R. Bassett and A.E. Hamielec (eds).Emulsion Polymers and Emulsion Polymerization. pp. 251–262. ACS Symposium Series 165. American Chem. Soc., Washington, D.C.

    Google Scholar 

  • Mattson, S. 1929a. The laws of soil colloidal behavior I. Soil Sci 28: 179–220.

    Article  CAS  Google Scholar 

  • Mattson, S. 1929b. The laws of soil colloidal behavior H. Soil Sci. 28: 373–409.

    Article  CAS  Google Scholar 

  • Midmore, B.R., and R.J. Hunter. 1988. The effect of electrolyte concentration and co-ion type on the Ç-potential of polystyrene latices. J. Colloid Interface Sci. 122: 521–529.

    Article  CAS  Google Scholar 

  • Miller, S.E. 1984. The characterization of the electrical double-layer of montmorillonite. Ph.D. thesis. Purdue University. West Lafayette, Indiana.

    Google Scholar 

  • Norrish, J., and J.P. Quirk. 1954. Crystalline swelling of montmorillonite. Use of electrolytes to control swelling. Nature 173: 255–256.

    CAS  Google Scholar 

  • Norrish, K. 1954. The swelling of montmorillonite. Faraday Soc. Dis. 18: 120–134.

    Article  CAS  Google Scholar 

  • O’Brien, R.W., and L.R. White. 1978. Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. H. 74: 1607–1626.

    Article  Google Scholar 

  • Ohshima, H., T.W. Healy, and L.R. White. 1983. Approximate analytic expressions for the electrophoretic mobility of spherical colloidal particles and the conductivity of their dilute suspension. J. Chem. Soc. Faraday Trans. II. 79: 1613–1628.

    Article  CAS  Google Scholar 

  • Ottewill, R.H., and J.N. Shaw. 1972. Electrophoretic studies on polystyrene latices. J. Electroanal. Interfacial Chem. 37: 133–142.

    Article  CAS  Google Scholar 

  • Pashley, R.M. 1981. DLVO and hydration forces between mica surfaces in Li*, Na*, K* and Cs* electrolyte solutions. A: Correlation of double-layer and hydration forces with surface exchange properties. J. Colloid Interf. Sci. 83: 531–546.

    Article  CAS  Google Scholar 

  • Pashley, R.M. 1985. Electromobility of mica particles dispersed in aqueous solutions. Clays Clay Miner. 33: 193–199.

    Article  CAS  Google Scholar 

  • Pickles, D.G., and J.P. Schlup. 1985. Particle association in smectite soils by transmission electron microscopy. Clays Clay Miner. 33: 362–366.

    Article  CAS  Google Scholar 

  • Quirk, J.P. 1968. Particle interaction and soil swelling. Israel J. Chem. 6: 213–234.

    CAS  Google Scholar 

  • Ravina, I., and D. Zaslaysky. 1968. Non-linear electrokinetic phenomena Part II. Experiments with electrophoresis of clay particles. Soil Sci. 106: 94–100.

    Article  CAS  Google Scholar 

  • Schofield, R.K. 1946. Ionic forces in thick films of liquid between charged surfaces. Trans. Faraday Soc. 42B: 219–225.

    Article  CAS  Google Scholar 

  • Shainberg, I. 1973. Rate and mechanism of Na-montmorillonite hydrolysis in suspensions. Soil Sci. Soc. Amer. Proc. 38: 689–694.

    Article  Google Scholar 

  • Shainberg, I., and W.D. Kemper. 1966. Hydration status of adsorbed cations. Soil Sci. Soc. Am. J. 43: 651.

    Google Scholar 

  • Shomer, I.H., and U. Mingelgrin. 1978. A direct procedure for determining the number of plates in tactoids of smectites: The Na/Ca-montmorillonite case. Clays Clay Miner. 26: 135–137.

    Article  CAS  Google Scholar 

  • Sposito, G. 1981.The Thermodynamics of Soil Solutions. Oxford University Press, New York.

    Google Scholar 

  • Sposito, G. 1984.The Surface Chemistry of Soils. Oxford University Press, New York.

    Google Scholar 

  • Sposito, G. 1987. The ion distribution in a 1:1 electrolyte solution near a smectite surface. EOS Trans., Amer. Geophys. Union 68: 1281–1282.

    Google Scholar 

  • Stern, O. 1924. Zur Theorie der elektrolytischen Doppelschicht. Z. Elektrochem. 30: 509–527.

    Google Scholar 

  • Stigter, D. 1978. Electrophoresis of highly charged colloidal cylinders in univalent salt solution. J. Phys. Chem. 82: 1417–1429.

    Article  CAS  Google Scholar 

  • Sullivan, P.J. 1977. The principle of hard and soft acids and bases as applied to exchangeable cation selectivity in soils. Soil Sci. 124: 117–121.

    Article  CAS  Google Scholar 

  • Swartzen-Allen, S.L., and E. Matijevic. 1975. Colloid and surface properties of clay suspensions II: Electrophoresis and cation adsorption of montmorillonite. J. Colloid Interf. Sci. 50: 143–153.

    Article  CAS  Google Scholar 

  • van Olphen, H. 1957. Surface conductance of various ion forms of bentonite in water and the electrical double layer. J. Phys. Chem. 61: 1276–1286.

    Article  Google Scholar 

  • van Olphen, H. 1977. An Introduction to Clay Colloid Chemistry. Wiley-Interscience, London.

    Google Scholar 

  • van Reeuwijk, L.P., and J.M. de Villiers. 1968. Potassium fixation by amorphous aluminosilicate gels. Soil Sci. Soc. Amer. Proc. 32: 238–240.

    Article  Google Scholar 

  • Viani, B.E., P.F. Low, and C.B. Roth. 1983. Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite. J. Colloid Interface Sci. 96: 229–244.

    Article  CAS  Google Scholar 

  • Wiersema, P.H., A.L. Loeb, and J.Th.G. Overbeek. 1966. Calculation of the electrophoretic mobility of a spherical colloid particle. J. Colloid Interface Sci. 22: 78–99.

    Article  CAS  Google Scholar 

  • Wilson, M.A., S.A. McCarthy, and P.M. Fredericks. 1986. Structure of poorly-ordered aluminosilicates. Clay Miner 21: 879–897.

    Article  CAS  Google Scholar 

  • Xu, Shihe. 1988. Electrophoretic mobility and monovalent cation selectivity of three reference clay minerals. M.S. Thesis. Dept. Agronomy and Soils. Washington State University. Pullman, Wash.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Harsh, J.B., Xu, S. (1990). Microelectrophoresis Applied to the Surface Chemistry of Clay Minerals. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3356-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3356-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7978-5

  • Online ISBN: 978-1-4612-3356-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics