Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 80))

Abstract

When one studies complex algebraic homogeneous spaces it is natural to begin with the ones which are complete (i.e. compact) varieties. They are the “generalized flag manifolds”. Their occurence in many problems of representation theory, algebraic geometry, … make them an important class of algebraic varieties. In order to study a noncompact homogeneous space G/H, it is equally natural to compactify it, i.e. to embed it (in a G- equivariant way) as a dense open set of a complete G-variety. A general theory of embeddings of homogeneous spaces has been developed by Luna and Vust [LV]. It works especially well in the so-called spherical case: G is reductive connected and a Borei subgroup of G has a dense orbit in G/H. (This class includes complete homogeneous spaces as well as algebraic tori and symmetric spaces). A nice feature of a spherical homogeneous space is that any embedding of it (called a spherical variety) contains only finitely many G-orbits, and these are themselves spherical. So we can hope to describe these embeddings by combinatorial invariants, and to study their geometry. I intend to present here some results and questions on the geometry (see [LV], [BLV], [BP], [Lun] for a classification of embeddings).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. N. Ahiezer, Equivariant completion of homogeneous algebraic varieties by homogeneous divisors, Ann. Glob. Analysis and Geometry 1 (1983), 49–78.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. F. Atiyah, Angular momentum, convex polyhedra and algebraic geometry, Proceedings of the Edinburgh Math. Soc. 26 (1983), 121–138.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. 98 (1973), 480–497.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bialynicki-Birula, Some properties of the decomposition of algebraic varieties determined by actions of a torus, Bull. Acad. Polo. Ser. Sci. Math. Astronom. Phys. 24 (1976), 667–674.

    MathSciNet  MATH  Google Scholar 

  5. E. Bifet, C. DeConcini, C. Procesi, Cohomology of complete symmetric varieties, Manuscript 1988.

    Google Scholar 

  6. M. Brion, Quelques propriétés des espaces homogènes sphériques, manuscripta math. 55 (1986), 191–198.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Brion, Classification des espaces homogènes sphériques, Compositio Math. 63 (1987), 189–208.

    MathSciNet  MATH  Google Scholar 

  8. M. Brion, Sur l’image de l’application moment, Séminaire d’algèbre, Springer Lecture Notes 1296.

    Google Scholar 

  9. M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, To appear in the Duke Mathematical Journal.

    Google Scholar 

  10. M. Brion, D. Luna, Sur la structure locale des variétés sphériques, Bull. Soc. Math. France 115 (1987), 211–226.

    MathSciNet  MATH  Google Scholar 

  11. M. Brion, D. Luna, T. Vust, Espaces homogènes sphériques, Invent. math. 84 (1986), 617–632.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Brion, F. Pauer, Valuations des espaces homogènes sphériques, Comment. Math. Helv. 62 (1987), 265–285.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. J. Duistermaat, G. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. math. 69 (1982), 259–268.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. J. Duistermaat, G. Heckman, Addendum to “On the variation …”, Invent. math. 72 (1983), 153–158.

    Article  MathSciNet  MATH  Google Scholar 

  15. C. DeConcini, C. Procesi, Complete symmetric varieties, Invariant theory, Springer Lecture Notes 996.

    Google Scholar 

  16. C. DeConcini, C. Procesi, Complete symmetric varieties II, Algebraic groups and related topics, North-Holland 1985.

    Google Scholar 

  17. C. DeConcini, C. Procesi, Cohomology of compactifications of algebraic groups, Duke Math. J. 53 (1986), 585–594.

    Article  MathSciNet  Google Scholar 

  18. C. DeConcini, M. Goresky, R. MacPherson, C. Procesi, On the geometry of complete quadrics, Comment. Math. Helv. 63 (1988), 337–413.

    Article  MathSciNet  Google Scholar 

  19. C. DeConcini, T. A. Springer, Betti numbers of complete symmetric varieties, Geometry Today (Birkhäuser 1985).

    Google Scholar 

  20. V. Guillemin, S. Sternberg, Convexity properties of the moment mapping I & II, Invent. math. 67 (1982), 491–513; Invent. math. 77 (1984), 533–546.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Guillemin, Multiplicity-free spaces, J. Diff. Geometry 19 (1984), 31–56.

    MathSciNet  MATH  Google Scholar 

  22. F. Kirwan, Convexity properties of the moment mapping III, Invent. math. 77 (1984), 547–552.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. L. Kleiman, Chasles’ enumerative theory of conics: A historical introduction, Aarhus Universitet, Preprint.

    Google Scholar 

  24. A. G. Kushnirenko, Polyèdres de Newton et nombres de Milnor, Invent, math. 32 (1976), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Luna, T. Vust, Plongements d’espaces homogènes, Comment. Math. Helv. 58 (1983), 186–245.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Luna, Report on spherical varieties, Manuscript 1986.

    Google Scholar 

  27. I. V. Mikityuk, On the integrability on invariant hamiltonian systems with homogeneous configuration spaces, Math. Sbornik 129[171] (1986), 514–534.

    MathSciNet  Google Scholar 

  28. L. Ness, A stratification of the nullcone via the moment map, Amer. J. Math. 106 (1984), 1281–1330.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Oda, Convex bodies and algebraic geometry (An introduction to the theory of toric varieties), (Springer-Verlag), Ergebnisse der Mathematik 15.

    Google Scholar 

  30. V. L. Popov, Contraction of the actions of reductive algebraic groups, Math. of the USSR Sbornik 58 (1987), 311–335.

    Article  MATH  Google Scholar 

  31. E. B. Vinberg, Complexity of the actions of reductive groups, Funct. Anal. and its Appl. 20 (1986), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Boston, Inc.

About this chapter

Cite this chapter

Brion, M. (1989). Spherical Varieties an Introduction. In: Kraft, H., Petrie, T., Schwarz, G.W. (eds) Topological Methods in Algebraic Transformation Groups. Progress in Mathematics, vol 80. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3702-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3702-0_3

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8219-8

  • Online ISBN: 978-1-4612-3702-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics