Skip to main content

Morphological Diversity of Equilibrium Receptor Systems in Aquatic Invertebrates

  • Conference paper
Sensory Biology of Aquatic Animals

Abstract

For proper behavior and orientation in space, any organism with the capacity to move needs information about its attitude and movement. This information is provided by equilibrium receptor systems. These enable the organism to control its position and motor activities in the three dimensions of space, using the gravitational field as a reference system. Compared with all other reference systems, such as light, sound, odor, and taste, the gravitational field is characterized by a unique feature: during the life span of an organism it is nearly constant in both magnitude and direction. Thus, the gravitational field is an ideal reference system, and during the course of evolution all organisms that use locomotion have developed specialized receptor systems for equilibrium orientation that make use of this reference system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, E., and Dumont, J.N. (1966) A comparative study of the concrement vacuole of certain endocommensal ciliates—a so-called mechanoreceptor, J. Ultrastruct. Res., 15:414–450.

    Article  PubMed  CAS  Google Scholar 

  • Aronova, M. (1974) Electron microscopic observations on the aboral organ of ctenophora, Z. Mikrosk. Anat. Forsch. 88:401–412.

    PubMed  CAS  Google Scholar 

  • Barber, V.C. (1968) The structure of mollusc statocysts, with particular reference to cephalopods, Symp. Zool. Soc. Lond., 23:84–96.

    Google Scholar 

  • Barber, V.C., and Dilly, P.N. (1969) Some aspects of the fine structure of the statocysts of the molluscs Pecten and Pterotrachea, Z. Zellforsch. Mikrosk. Anat., 94:462–478.

    Article  CAS  Google Scholar 

  • Baunacke, W. (1912) Statische Sinnesorgane bei Nepiden, Zool. Jahrb. Anat., 34:197–342.

    Google Scholar 

  • Bean, B. (1977) Geotactic behavior of Chlamydomonas, J. Protozool., 24:394–401.

    PubMed  CAS  Google Scholar 

  • Brüggemann, J., and Ehlers, U. (1981) Ultrastruktur der Statocyste von Ototyphlonemertes pallida (Keferstein 1862) (Nemertini), Zoomorphology, 97:75–87.

    Article  Google Scholar 

  • Budelmann, B.U. (1970) Die Arbeitsweise der Statolithenorgane von Octopus vulgaris, Z. Vgl. Physiol., 70:278–312.

    Article  Google Scholar 

  • Budelmann, B.U. (1975) Gravity receptor function in cephalopods with particular reference to Sepia officinalis, Fortschr. Zool., 23:84–96.

    PubMed  CAS  Google Scholar 

  • Budelmann, B.U. (1976) Equilibrium receptor systems in molluscs, in Structure and Function of Proprioceptors in the Invertebrates, Mill, P.J. (ed.), Chapman and Hall, London, pp. 529–566.

    Google Scholar 

  • Budelmann, B.U. (1977) Structure and function of the angular acceleration receptor systems in the statocysts of cephalopods, Symp. Zool. Soc. Lond., 38:309–324.

    Google Scholar 

  • Budelmann, B.U. (1978) The function of the equilibrium receptor systems of cephalopods, Proc. Neurootol. Equilibriomet. Soc., 6:15–63.

    Google Scholar 

  • Budelmann, B.U. (1979) Hair cell polarization in the gravity receptor systems of the statocysts of the cephalopods Sepia officinalis and Loligo vulgaris, Brain Res., 160:261–270.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann, B.U., and Bonn, U. (1982) Histochemical evidence for catecholamines as neurotransmitters in the statocysts of Octopus vulgaris, Cell Tissue Res., 227:475–483.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann, B.U., Sachse, M., and Staudigl, M. (1987) The angular acceleration receptor system of the statocyst of Octopus vulgaris: morphometry, ultrastucture, and neuronal and synaptic organization, Philos. Trans. R. Soc. Lond. B Biol. Sci. (in press)

    Google Scholar 

  • Budelmann, B.U., and Thies, G. (1977) Secondary sensory cells in the gravity receptor system of the statocyst of Octopus vulgaris, Cell Tissue Res., 182:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Budelmann, B.U., and Wolff, H.G. (1973) Gravity response from angular acceleration receptors in Octopus vulgaris, J. Comp. Physiol., 85:283–290.

    Article  Google Scholar 

  • Budelmann, B.U., and Young, J.Z. (1984) The statocyst-oculomotor system of Octopus vulgaris: extraocular eye muscles, eye muscle nerves, statocysts nerves and the oculomotor centre in the central nervous system, Philos. Trans. R. Soc. Lond. B Biol. Sci., 306:159–189.

    Article  Google Scholar 

  • Bullock, T.H., and Horridge, G.A. (1965) Structure and Function of the Nervous Systems of Invertebrates, Freeman, San Francisco.

    Google Scholar 

  • Campbell, R.D. (1972) Statocyst lacking cilia in the coelenterate Corymorpha palma, Nature, 238:49–51.

    Article  PubMed  CAS  Google Scholar 

  • Chia, F.S., Koss, R., and Bickell, L.R. (1981) Fine structural study of the statocysts in the veliger larva of the nudibranch, Rostanga pulchra, Cell Tissue Res., 214:67–80.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M.J. (1955) The function of receptors in the statocysts of the lobster Homarus americanus, J. Physiol., 130:9–34.

    PubMed  CAS  Google Scholar 

  • Cohen, M.J. (1960) The response patterns of single receptors in the crustacean statocyst, Proc. R. Soc. Lond. B Biol. Sci., 152:30–49.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M.J., and Dijkgraaf, S. (1961) Mechanoreception, in The Physiology of Crustacea, vol 2, Waterman, T. (ed.), Academic Press, New York, pp. 65–108.

    Google Scholar 

  • Colmers, W.F. (1977) Neuronal and synaptic organization in the gravity receptor system of the statocyst of Octopus vulgaris, Cell Tissue Res., 185:491–503.

    Article  PubMed  CAS  Google Scholar 

  • Colmers, W.F. (1981) Afferent synaptic connections between hair cells and the somata of intramacular neurons in the gravity receptor system of the statocyst of Octopus vulgaris, J. Comp. Neurol., 197:385–394.

    Article  PubMed  CAS  Google Scholar 

  • Cragg, S.M., and Nott, J.A. (1977) The ultrastructure of the statocysts in the pediveliger larvae of Pecten maximus (L) (Bivalvia), J. Exp. Mar. Biol. Ecol., 27:23–36.

    Article  Google Scholar 

  • Dennison, D.S., and Shropshire, W. (1984) The gravireceptor of Phycomyces: its development following gravity exposure, J. Gen. Physiol., 84:845–859.

    Article  PubMed  CAS  Google Scholar 

  • Dilly, N. (1961) Electron microscope observations of the receptors in the sensory vesicle of the ascidian tadpole, Nature, 191:786–787.

    Article  Google Scholar 

  • Dilly, N. (1962) Studies on the receptors in the cerebral vesicle of the ascidian tadpole. I. The otholith, Q. J. Microsc. Sci., 103:393–398.

    Google Scholar 

  • Dorsett, D.A. (1976) The structure and function of proprioceptors in soft-bodied invertebrates, in Structure and Function of Proprioceptors in the Invertebrates. Mill, P.J. (ed.), Chapman and Hall, London, pp. 443–183.

    Google Scholar 

  • Estes, M.S., Blanks, R.H.I., and Markham, C.H. (1975) Physiological characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics, J. Neurophysiol., 38:1232–1249.

    PubMed  CAS  Google Scholar 

  • Ferrero, E. (1973) A fine structural analysis of the statocyst in turbellaria acoela, Zool. Scr., 2:5–16.

    Article  Google Scholar 

  • Flock, A. (1965) Transducing mechanisms in the lateral line canal receptors. Cold Spring Harbor Symp. Quant. Biol., 30:133–145.

    PubMed  CAS  Google Scholar 

  • Fraser, P.J. (1977) How morphology of semicircular canals affects transduction, as shown by response characteristics of statocyst interneurons in the crab Carcinus maenas (L), J. Comp. Physiol., 115:135–145.

    Article  Google Scholar 

  • Fraser, P.J., and Sandeman, D.C. (1975) Effects of angular and linear accelerations on semicircular canal interneurons of the crab Scylla serrata, J. Comp. Physiol., 96:205–221.

    Article  Google Scholar 

  • Goldberg, J.M., and Fernandez, C. (1975) Vestibular mechanisms, Annu. Rev. Physiol., 37:129–162.

    Article  PubMed  CAS  Google Scholar 

  • Hertwig, O., and Hertwig, R. (1878) Das Nervensystem und die Sinnesorgane der Medusen, Vogel, Leipzig.

    Google Scholar 

  • Horridge, G.A. (1969) Statocysts of medusae and evolution of stereocilia, Tissue & Cell, 1:341–353.

    Article  CAS  Google Scholar 

  • Horridge, G.A. (1971) Primitive examples of gravity receptors and their evolution, in Gravity and the Organism, Gordon, S.A., and Cohen, M.J. (eds.), University of Chicago Press, Chicago, pp. 203–221.

    Google Scholar 

  • Hudspeth, A.J. (1983) Mechanoelectrical transduction by hair cells in the acousticolateralis sensory system, Annu. Rev. Neurosci., 6:187–215.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth, A.J., and Jacobs, R. (1979) Stereocilia mediate transduction in vertebrate hair cells, Proc. Nat. Acad. Sci. U.S.A., 76:1506–1509.

    Article  CAS  Google Scholar 

  • Iversen, T.H., and Rommelhoff, A. (1978) The starch statolith hypothesis and the interaction of amyloplasts and endoplasmatic reticulum in root geotropism, J. Exp. Bot., 29:1319–1328.

    Article  Google Scholar 

  • Janse, C. (1980) The function of the statolith-hair and free-hook-hair receptors in the statocyst of the crab, Scylla serrata, J. Comp. Physiol., 137:51–62.

    Article  Google Scholar 

  • Janse, C. (1983) The function of the statocyst sensory cells in Aplysia limacina, J. Comp. Physiol., 150:359–370.

    Article  Google Scholar 

  • Krisch, B. (1973) Über das Apikalorgan (Statocyste) der Ctenophore Pleurobrachia pileus, Z. Zellforsch. Mikrosk. Anat., 142:241–262.

    Article  CAS  Google Scholar 

  • Kuzirian, A.M., Alkon, D.L., and Harris, L.G. (1981) An infraciliary network in statocyst hair cells, J. Neurocytol., 10:497–514.

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein, O., and Compton, G.J. (1978) A comparative study of the responses of isolated first-order semicircular canal afferents to angular and linear acceleration, analysed in the time and frequency domains, Proc. R. Soc. Lond. B Biol. Sci., 202:313–338.

    Article  Google Scholar 

  • Macadar, O., Wolfe, G.E., O’Leary, D.P., and Segundo, J.P. (1975) Response of the elasmobranch utricle to maintained spatial orientation, transition, and jitter, Exp. Brain Res., 22:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Maddock, L., and Young, J.Z. (1984) Some dimensions of the angular acceleration receptor systems of cephalopods, J. Mar. Biol. Assoc. U.K., 64:55–79.

    Article  Google Scholar 

  • Markl, H. (1974) The perception of gravity and of angular acceleration in invertebrates, in Handbook of Sensory Physiology, vol. 6, Vestibular System, Part I, Basic Mechanisms, Kornhuber, H.H. (ed.), Springer-Verlag, Berlin, pp. 17–74.

    Google Scholar 

  • McClary, A. (1968) Statoliths of the gastropod Pomacea paludosa, Trans. Am. Microsc. Soc., 87:322–328.

    Article  Google Scholar 

  • Merker, G., and Vaupel von Harnack, M. (1967) Zur Feinstruktur des Gehirns und der Sinnesorgane von Protodrilus rubropharyngeus Jaegersten (Archiannelida), Z. Zellforsch. Mikrosk. Anat., 81:221–239.

    Article  PubMed  CAS  Google Scholar 

  • Neil, D.M. (1975) The mechanism of statocyst operation in the mysid shrimp Praunus flexuosus, J. Exp. Biol., 62:685–700.

    Google Scholar 

  • Neugebauer, D.C., and Thurm, U. (1985) Interconnections between the stereovilli of the fish inner ear, Cell Tissue Res., 240:449–453.

    Article  Google Scholar 

  • Osborne, M.P., Comis, S.D., and Pickles, J.O. (1984) Morphology and cross-linkage of stereocilia in the quinea-pig labyrinth examined without the use of osmium as a fixative, Cell Tissue Res., 237:43–48.

    PubMed  CAS  Google Scholar 

  • Perbal, G., and Rivière, S. (1980) Ultrastructure des cellules perceptrices de la gravité dans l’épicotyle d’ Asparagus officinalis L., Biol. Cell., 39:91–98.

    Google Scholar 

  • Pires, A., and Woollacott, R.M. (1983) A direct and active influence of gravity on the behavior of a marine invertebrate larva, Science, 220:731–733.

    Article  PubMed  CAS  Google Scholar 

  • Plate, L. (1924) Allgemeine Zoologie und Abstammungslehre. 2.Teil. Die Sinnesorgane der Tiere, Fischer, Jena.

    Google Scholar 

  • Platt, C. (1984) Cellular bases for gravistatic reception by invertebrates and vertebrates, in Comparative Physiology of Sensory Systems, Bolis, L., Keynes, R.D., and Maddrell, S.H.P. (eds.), Cambridge University Press, pp. 563–586.

    Google Scholar 

  • Precht, W. (1979) Vestibular mechanisms, Annu. Rev. Neurosci., 2:265–289.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A.M. (1970) Geotaxis in motile micro-organisms, J. Exp. Biol., 53:687–699.

    PubMed  CAS  Google Scholar 

  • Rose, R.D., and Stokes, D.R. (1981) A crustacean statocyst with only three hairs: light and scanning electron microscopy, J. Morphol., 169:21–28.

    Article  Google Scholar 

  • Sandeman, D. (1976) Spatial equilibrium in the arthropods, in Structure and Function of Proprioceptors in the Invertebrates, Mill, P.J. (ed.), Chapman and Hall, London, pp. 485–527.

    Google Scholar 

  • Sandeman, D. (1983) The balance and visual systems of the swimming crab: their morphology and interaction, Fortschr. Zool., 28:213–229.

    Google Scholar 

  • Sandeman, D.C., and Okajima, A. (1972) Statocyst-induced eye movements in the crab Scylla serrata. I. The sensory input from the statocyst, J. Exp. Biol., 57:187–204.

    PubMed  CAS  Google Scholar 

  • Schmidt, W. (1912) Untersuchungen über die Statocysten unserer einheimischen Schnecken, Z. Med. Naturwiss., 48:515–562.

    Google Scholar 

  • Schöne, H. (1954) Statocystenfunktion und statische Lageorientierung bei decapoden Krebsen, Z. Vgl. Physiol., 36:241–260.

    Article  Google Scholar 

  • Schöne, H. (1971) Gravity receptors and gravity orientation in Crustacea, in Gravity and the Organism, Gordon, S.A., and Cohen, M.J. (eds.), University of Chicago Press, Chicago, pp. 223–235.

    Google Scholar 

  • Schöne, H., and Steinbrecht, R.A. (1968) Fine structure of statocyst receptor of Astacus fluviatilis, Nature, 220:184–186.

    Article  PubMed  Google Scholar 

  • Schröter, K., Läuchli, A., and Sievers, A. (1975) Mikroanalytische Identifikation von Bariumsulfat-Kristallen in den Statolithen der Rhizoide von Chara fragilis, Desv. Planta, 122:213–225.

    Article  Google Scholar 

  • Sievers, A., and Volkmann, D. (1977) Ultrastructure of gravity-perceiving cells in plant roots, Proc. R. Soc. Lond. B Biol. Sci., 199:525–536.

    Article  PubMed  CAS  Google Scholar 

  • Singla, C.L. (1975) Statocysts of hydromedusae, Cell Tissue Res., 158:391–407.

    Article  PubMed  CAS  Google Scholar 

  • Stahlschmidt, V., and Wolff, H.G. (1972) The fine structure of the statocyst of the prosobranch mollusc Pomacea paludosa, Z. Zellforsch. Mikrosk. Anat., 133:529–537.

    Article  PubMed  CAS  Google Scholar 

  • Stein, A. (1975) Attainment of positional information in the crayfish statocyst, Fortschr. Zool., 23:109–119.

    PubMed  CAS  Google Scholar 

  • Stephens, P.R., and Young, J.Z. (1976) The statocyst of Vampyroteuthis infernalis (Mollusca: Cephalopoda), J. Zool. Lond., 180:565–588.

    Article  Google Scholar 

  • Stephens, P.R., and Young, J.Z. (1978) Semicircular canals in squids, Nature, 271:444–445.

    Article  Google Scholar 

  • Stephens, P.R., and Young, J.Z. (1982) The statocyst of the squid Loligo. J. Zool. Lond., 197:241–266.

    Google Scholar 

  • Takahata, M., and Hisada, M. (1979) Functional polarization of statocyst receptors in the crayfish Procambarus clarkii Girard, J. Comp. Physiol., 130:201–207.

    Article  Google Scholar 

  • Thorpe, W.H., and Crisp, D.J. (1947) The orientation responses of Aphelocheirus (Hemiptera, Aphelocheiridae [Naucoridae]) in relation to plastron respiration; together with an account of specialized pressure receptors in aquatic insects, J. Exp. Biol., 24:310–328.

    PubMed  CAS  Google Scholar 

  • Tschachotin, S. (1908) Die Statocysten der Heteropoden, Z. Wiss. Zool., 90:343–422.

    Google Scholar 

  • Tsirulis, T.P. (1981) The ultrastructural organization of statocysts of some bivalvia molluscs (Ostrea edulis, Mytilus edulis, Anodonta cygnea), Tsitologiya, 23:631–637.

    Google Scholar 

  • Vinnikov, Y.A. (1974) Evolution of the gravity receptor, Minerva Otorinolaringol., 24:1–48.

    Google Scholar 

  • Vinnikov, Y.A., Gazenko, O.G., Titova, L.K., Bronshtein, A.A., Pevzner, R.A., Govardovskii, V.I., Gribakin, F.G., Ivanov, V.P., Aronova, M.Z., and Chekhondaskii, N.A. (1971) Retseptor gravitatsii: evolyutsiya strukturnoi, tsitokhimicheskoi i funktsionalnoi organizatsii, V serii “Problemy Kosmicheskoi Biologii” tom 12, Izd. Nauka, Leningrad.

    Google Scholar 

  • Williamson, R., and Budelmann, B.U. (1985) The response of the Octopus angular acceleration receptor system to sinusoidal stimulation, J. Comp. Physiol. A Sens. Neural Behav. Physiol., 156:403–412.

    Article  Google Scholar 

  • Winet, H., and Jahn, T.L. (1974) Geotaxis in protozoa. I. A propulsion-gravity model for Tetrahymena (Ciliata), J. Theor. Biol., 46:449–465.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, H.G. (1970) Statocystenfunktion bei einigen Landpulmonaten (Gastropoda), Z. Vgl. Physiol., 69:326–366.

    Article  Google Scholar 

  • Wolff, H.G. (1973) Multi-directional sensitivity of statocyst receptor cells of the opistho- branch gastropod Aplysia limacina, Mar. Behav. Physiol., 1:361–373.

    Article  Google Scholar 

  • Young, J.Z. (1960) The statocysts of Octopus vulgaris, Proc. R. Soc. Lond. B Biol. Sci., 152:3–29.

    Article  CAS  Google Scholar 

  • Young, J.Z. (1965) The central nervous system of Nautilus, Philos. Trans. R. Soc. Lond. B Biol. Sci., 249:1–25.

    Article  Google Scholar 

  • Young, J.Z. (1984) The statocysts of cranchiid squids (Cephalopoda), J. Zool. Lond., 203: 1–21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Budelmann, BU. (1988). Morphological Diversity of Equilibrium Receptor Systems in Aquatic Invertebrates. In: Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N. (eds) Sensory Biology of Aquatic Animals. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3714-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3714-3_30

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8317-1

  • Online ISBN: 978-1-4612-3714-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics