Skip to main content

Auditory Representations of Timbre and Pitch

  • Chapter
Auditory Computation

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 6))

Abstract

Pitch and timbre are terms developed to describe musical sounds. By convention, pitch is that perceptual property of a sound that can be used to play a melody, while timbre is a rather more vague perceptual property that distinguishes musical sounds of the same pitch. The pitch of an arbitrary sound is quantified as the frequency in hertz (Hz) of a sinusoid with perceptually matching pitch. Thus, one might say that pitch is a perceptual frequency, and timbre is almost everything else (but not including loudness, position, and perhaps a few other well-defined attributes). In general, a sound source achieves a perceptual unity through pitch, and encodes its identity primarily through timbre. For example, any instrument playing middle C will be heard as a sound source with a pitch of 262 Hz, but the timbre of the sound will tell us whether we are hearing a string excited by a bow, or a tube excited by reed, or a vibrating metal bar, or an electronically synthesized buzz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen J (1985) Cochlear modelling. IEEE ASSP 2(l):3–29.

    Google Scholar 

  • Ashmore J (1993) The ear’s fast cellular motor. Curr Biol 3:38–40.

    Article  PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge: MIT Press.

    Google Scholar 

  • Brown J, Puckette M (1989) Calculation of a “narrowed” autocorrelation function. J Acoust Soc Am 85:1595–1601.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun B and Schreiner C (1993) Spatial frequency fitters in cat primary auditory cortex. Abstract (581.8) in Soc. Neuroscience Meeting Washington D.C.

    Google Scholar 

  • Cariani P, Delgutte B (1992) Coding of the pitch of harmonic and inharmonic complex tones in the interspike intervals of auditory-nerve fibers. In: Schouten M (ed) The Processing of Speech. Berlin: Mouton-de Gruyter.

    Google Scholar 

  • Dallos P, Geisler C, Mathews J, Ruggero M, Steele C (eds) (1990) Mechanics and Biophysics of Hearing. Berlin: Springer.

    Google Scholar 

  • Delgutte B (1984) Speech coding in auditory nerve: processing schemes for vowellike sounds. J Acoust Soc Am 75:879–886.

    Article  PubMed  CAS  Google Scholar 

  • Deng L, Geisler D, Greenberg S (1988) A composite model of the auditory periphery for the processing of speech. J Phonetics 16:3–18.

    Google Scholar 

  • de Valois R, de Valois K (1988) Spatial Vision. New York: Oxford University Press.

    Google Scholar 

  • Flanagan J (1972) Speech Analysis, Synthesis, and Perception, 2nd Ed. Berlin: Springer.

    Google Scholar 

  • Gitza O (1988) Temporal non-place information in the auditory-nerve firing patterns as a front-end for speech recognition in noisy environments. J Phonetics 16:109–124.

    Google Scholar 

  • Goldstein J (1973) An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Am 54:1496–1516.

    Article  PubMed  CAS  Google Scholar 

  • Hartline H (1974) Studies on Excitation and Inhibition in the Retina. New York: Rockefeller University Press.

    Google Scholar 

  • Hess W (1983) Pitch Determination of Speech Signals. Berlin: Springer

    Google Scholar 

  • Houtsma A (1979) Musical pitch of two-tone complexes and predictions by modern pitch theories. J Acoust Soc Am 66(l):87–99.

    Article  PubMed  CAS  Google Scholar 

  • Houtsma A, Smurzynski J (1990) Pitch identification and discrimination for complex tones with many harmonics. J Acoust Soc Am 87:304–310.

    Article  Google Scholar 

  • Javel E, Mott J (1988) Physiological and psychophysical correlates of temporal processing in hearing. Hear Res 34:275–294.

    Article  PubMed  CAS  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in the responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68: 1125–1122.

    Google Scholar 

  • Kiang N, Watanabe T, Thomas E, Clark L (1965) Discharge patterns of single fibers in the cat’s auditory nerve. Research Monographs No. 35 Cambridge: MIT Press.

    Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60: 115–142.

    Article  PubMed  CAS  Google Scholar 

  • Langner G (1993) Spatial representation of periodicity pitch in the human auditory cortex. In: Abstracts, Society of Neuroscience Meeting, 1993, Washington, D.C., Abstr. 581.11.

    Google Scholar 

  • Lazzaro J, Mead C (1989) Silicon modeling of pitch perception. Proc Natl Acad Sci. USA 86:9587–9601.

    Article  Google Scholar 

  • Licklider J (1951) Aduplex theory of pitch perception. Experientia 7:128–134.

    Article  PubMed  CAS  Google Scholar 

  • Loeb G, White M, Merzenich M (1983) Spatial-correlation: a proposed mechanism for acoustic pitch perception. Biol Cybern 47:149–163.

    Article  PubMed  CAS  Google Scholar 

  • Lyon R (1983) A computational model of binaural localization and separation. IEEE Proc International Conference on Acoustics, Speech, and Signal Processing, Boston, MA April.

    Google Scholar 

  • Lyon R (1990) Automatic gain control in cochlear mechanics. In: P. Dallos (ed) The Mechanics and Biophysics of Hearing. Springer Verlag.

    Google Scholar 

  • Makhoul J (1975) Linear prediction: a tutorial review. Proc IEEE 63:561–580.

    Article  Google Scholar 

  • Moore B (ed) (1986) Frequency Selectivity in Hearing. London: Academic Press.

    Google Scholar 

  • Moore B (1989) An Introduction to the Psychology of Hearing, 3rd Ed. London: Academic Press.

    Google Scholar 

  • Mead CA, Arreguit X, Lazzaro J (1991) Analog VLSI Model of Binaural Hearing. IEEE Trans Neural Networks 2:230–236.

    Article  CAS  Google Scholar 

  • Miller M, Sachs M (1983) Representation of stop consonants in the discharge patterns of auditory-nerve fibers. J Acoust Soc Am 74:502–517.

    Article  PubMed  CAS  Google Scholar 

  • Neff W, Diamond I, Cassiday J (1975) Behavioral studies of auditory discrimination: central nervous system. In: Keidel W, Neff W (eds) Handbook of Sensory Physiology, Vol. 5. New York: Springer-Verlag.

    Google Scholar 

  • Ohm G (1843) Uber die defintion des tones, nebst daran geknupfter theorie der sirene und ahnlicher tonbildender vorichtungen. Ann Phys Chem 59:513–565.

    Article  Google Scholar 

  • Patterson R (1987) A pulse ribbon model of monaural phase perception. J Acoust Soc Am 82:1560–1586.

    Article  PubMed  CAS  Google Scholar 

  • Patterson R, Holdsworth J (1991) A functional model of neural activity patterns and auditory images. In: Ainsworth WA (ed) Advances in Speech, Hearing, and Language Processing, Vol. 3. London: JAI Press.

    Google Scholar 

  • Phillips D, Orman S (1984) Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation. J Neurophysiol (Bethesda) 51:147–163.

    CAS  Google Scholar 

  • Plomp R (1976) Aspects of Tone Sensation. London: Academic Press.

    Google Scholar 

  • Rabiner L, Schafer R (1978) Digital Processing of Speech Signals Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Rhode W (1980) Cochlear partition vibration: recent views. J Acoust Soc Am 67:1696–1703.

    Article  PubMed  CAS  Google Scholar 

  • Ruggero R, Rich N (1983) Two-tone distortion in the basilar membrane of the cochlea. Nature 349:413–414.

    Google Scholar 

  • Sachs M, Blackburn C (1991) Processing of complex sounds in the cochlear nucleus. In: Altschuler R, Bobbin R, Clopton B, Hoffman D (eds) Neurophysiology of Hearing: The Central Auditory System. New York: Raven Press.

    Google Scholar 

  • Sachs M, Young E (1979) Encoding of steady state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Am 66:470–479.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner C, Langner G (1988) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol (Bethesda) 60:1823–1840.

    CAS  Google Scholar 

  • Schreiner C, Mendelson J (1990) Functional topography of cat primary auditory cortex: distribution of integrated excitation. J Neurophysiol (Bethesda) 64: 1442–1459.

    CAS  Google Scholar 

  • Schreiner C, Urbas J (1988) Representation of amplitude modulation in the auditory cortex of the cat: I. The anterior field (AAF). Hear Res 21:227–241.

    Article  Google Scholar 

  • Schwartz D, Tomlinson R (1990) Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatto). J Neurophysiol (BEthesda) 64:282–299.

    Google Scholar 

  • Seneff S (1988) A joint synchrony/mean-rate model of auditory processing. J Phonetics 16:55–76.

    Google Scholar 

  • Shamma S (1985a) Speech processing in the auditory system: I. Representation of speech sounds in the responses of the auditory nerve. J Acoust Soc Am 78:1612–1621.

    Article  PubMed  CAS  Google Scholar 

  • Shamma S (1985b) Speech processing in the auditory system: II. Lateral inhibition and the central processing of speech-evoked activity in the auditory nerve. J Acoust Soc Am 78:1622–1632.

    Article  PubMed  CAS  Google Scholar 

  • Shamma S (1989) Spatial and temporal processing in central auditory networks. In: Koch C, Segev I (eds) Methods in Neuronal Modelling. Cambridge: MIT Press.

    Google Scholar 

  • Shamma S, Morrish K (1986) Synchrony suppression in complex stimulus responses of a biophysical model of the cochlea. J Acoust Soc Am 81: 1486–1498.

    Article  Google Scholar 

  • Shamma S, Shen N, Gopalaswamy P (1989) Stereausis: binaural processing without neural delays. J Acoust Soc Am 86:989–1006.

    Article  PubMed  CAS  Google Scholar 

  • Shamma S, Versnel H, Kowalski N (1995) Ripple analysis in the ferret primary auditory cortex: I. Respse characteristics of single units to sinusoidally rippled spectra. Auditory Neurosciency 1(2). (in press).

    Google Scholar 

  • Shamma S, Vrainc S, Versnel H (1995) Representation of spectral profiles in the auditory system: Theory, Physiology, and Psychoacoustics. In: Mauley G, Klump G, Koppl C, Fastl H, Oechinghaus H (eds) Advances in Hearing Research, World Scientific Publishers.

    Google Scholar 

  • Shamma S, Chadwick R, Wilbur J, Rinzel J (1986) A biophysical model of cochlear processing: intensity dependence of pure tone responses. J Acoust Soc Am 80:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Shamma S, Fleshman J, Wiser P, Versnel H (1993) Organization of response areas in ferret primary auditory cortex. J Neurophysiol (Bethosda) 69(2): 367–383.

    CAS  Google Scholar 

  • Shamma S, Versnel H (1995) Ripple Analysis in the ferret primary auditory cortex. II. Prediction of single unit responses to arbitrary spectral profiles. Auditory Neuroscience 1(2) (in press).

    Google Scholar 

  • Schouten JF, Ritsma RL, Cardozo BL (1962) Pitch of the residue. J Acoust Soc Am 34:1418–1424.

    Article  Google Scholar 

  • Siebert W (1970) Frequency discrimination in the auditory system: place or periodicity mechanisms? Proc IEEE 58:723–730.

    Article  Google Scholar 

  • Simmons J, Moss C, Ferragamo M (1990) Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bats. J Comp Physiol A 166:449–470.

    PubMed  CAS  Google Scholar 

  • Sinex D, Geisler D (1983) Responses of auditory-nerve fibers to consonant-vowel syllables. J Acoust Soc Am 73:602–615.

    Article  PubMed  CAS  Google Scholar 

  • Slaney M, Lyon R (1990) A perceptual pitch detector. In: Proceedings, IEEE International Conference on Acoustics, Speech, and Signal Processing, Albuquerque, NM. April.

    Google Scholar 

  • Slaney M, Lyon R (1992) On the importance of time—a temporal representation of sound. In: Cooke M, Beet S, Crauford M (eds) Visual Representations of Speech Signals. Chichester: Wiley.

    Google Scholar 

  • Stevens K (1950) Autocorrelation analysis of speech sounds. J Acoust Soc Am 22:769–771.

    Article  Google Scholar 

  • Suga N (1984) Neural mechanisms of complex-sound processing for echolocation. Trends Neurosci 6:20–27.

    Article  Google Scholar 

  • Suga N, Manabe T (1982) Neural basis of amplitude spectrum representation in auditory cortex of the mustached bat. J Neurophysiol (Bethesda) 47:225–255.

    CAS  Google Scholar 

  • Suga N, O’Neill W, Kujirai K, Manabe T (1983) Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. J Neurophysiol (Bethesda) 49:1573–1626.

    CAS  Google Scholar 

  • Terhardt E (1979) Calculating virtual pitch Hear Res 1:155–182.

    Article  PubMed  CAS  Google Scholar 

  • Versnel H, Kowalski N, Shamma S (1995) Ripple analysis in the ferret primary auditory cortex: III. Topographic and columnar organization of ripple response characteristics. Auditory Neuroscience 1(2) (in press).

    Google Scholar 

  • Viemeister N (1988) Psychophysical aspects of auditory intensity coding. In: Edelman G, Gall W, Cowan W (eds) Auditory Function. New York: Wiley.

    Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • von Helmholtz H (1863) Die Lehre von der tonempfindungen als physiologische Grundlage fur die Theorie der Musik, 1st Ed. Braunschweig: Vieweg.

    Google Scholar 

  • Wang K, Shamma S (1994) Self-normalization and noise robustness in early auditory representations. IEEE Trans Audio Speech 2(3):421–435.

    Article  Google Scholar 

  • Wang K, Shamma S (1995) Modelling auditory functions in the primary auditory cortex. IEEE Trans Audio Speech (in press).

    Google Scholar 

  • Westerman L, Smith R (1984) Rapid and short-term adaptation in auditory-nerve responses. Hear Res 15:249–260.

    Article  PubMed  CAS  Google Scholar 

  • Wever E, Bray C (1930) Action currents in the auditory nerve in response to acoustical stimulation. Proc Natl Acad Sci USA 16:344–350.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield I (1980) Auditory cortex and the pitch of complex tones. J Acoust Soc Am 67:644–647.

    Article  PubMed  CAS  Google Scholar 

  • Wightman F (1973) A pattern transformation model of pitch. J Acoust Soc Am 54:397–406.

    Article  PubMed  CAS  Google Scholar 

  • Winslow R, Barta P, Sachs M (1987) Rate coding in the auditory nerve. In: Watson C, Yost W (eds) Auditory Processing of Complex Sounds. Hillsdale: Erlbaum.

    Google Scholar 

  • Yang X, Wang K, Shamma S (1992) Auditory representations of acoustic signals. IEEE Trans Inform Theory 38:824–839.

    Article  Google Scholar 

  • Yin T, Kuawada S (1984) Neuronal mechanisms of binaural interactions. In: Edelman G, Gall W, Cowan W (eds) Dynamic Aspects of Neocortical Function. Neurosciences Institute Publications. New York: Wiley, pp. 263–314.

    Google Scholar 

  • Young E, Sachs M (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Lyon, R., Shamma, S. (1996). Auditory Representations of Timbre and Pitch. In: Hawkins, H.L., McMullen, T.A., Popper, A.N., Fay, R.R. (eds) Auditory Computation. Springer Handbook of Auditory Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4070-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4070-9_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8487-1

  • Online ISBN: 978-1-4612-4070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics