Skip to main content

Degree for Gradient Equivariant Maps and Equivariant Conley Index

  • Conference paper
Topological Nonlinear Analysis II

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 27))

Abstract

In order to establish some notation and terminology we recall that if f : ℝn → ℝn is continuous and Ω is an open bounded subset of ℝn such that f is different from 0 on the boundary of Ω, then there is defined an integer Deg(f, Ω) — the Brouwer (or topological) degree of f with respect to Ω. Obviously, if in the place of all continuos maps and all open bounded subsets of ℝn we take a smaller class of maps and/or a smaller class of subsets then we may try to define a topological invariant finer then the topological degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Amann, A note on degree theory for gradient maps, Proc. AMS 85 (1982), 591–595.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Bartsch, Topological methods for variational problems with symmetries, Lecture Notes in Mathematics 1560, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  3. G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.

    MATH  Google Scholar 

  4. C. Conley, Isolated invarient sets and the Morse index, CBMS, Regional Confer. Ser. in Math., AMS, Providence, R.I., 1978.

    Google Scholar 

  5. C. Conley and E. Zehnder, A Morse type index theory for flows and periodic solutions to Hamiltonian systems, Comm. Pure Appi Math. 37 (1984), 207–253.

    Article  MathSciNet  MATH  Google Scholar 

  6. S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New-York, 1982.

    MATH  Google Scholar 

  7. E. N. Dancer, A new degree for 51-equivariant gradient mappings and applications, Ann. Inst. H. Poincaré, Anal. Non Linéaire 2 (1982), 329–370.

    MathSciNet  Google Scholar 

  8. T. torn Dieck, Transformation Groups, de Gruyter, Berlin, 1987.

    Book  MATH  Google Scholar 

  9. A. Dold, Lectures on Algebraic Topology, Springer-Verlag, New-York, 1972.

    MATH  Google Scholar 

  10. G. Dylawerski, K. Gęba, J. Jodel, and W. Marzantowicz, S 1-equivariant degree and the Puller index, Ann. Pol Math. 52 (1991), 243–280.

    MATH  Google Scholar 

  11. A. Floer, A refinement of the Conley index and an application to the stability of hyperbolic invariant sets, Ergod. Th. and Dynam. Sys. 7 (1987), 93–103.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. W. Hirsch, Differential Topology, Springer-Verlag, New York, 1976.

    MATH  Google Scholar 

  13. K. Gęba, W. Krawcewicz, and J. Wu, An equivariant degree with applications to symmetric bifurcation problems. Part 1: Construction of the degree, Proc. London Math. Soc. 69 (1994), 377–398.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Gęba, I. Massabo, and A. Vignoli, On the Euler characteristic of equivariant gradient vector fields, Boll. Unione Mat. Italiana A.4(1990), 243–251.

    MATH  Google Scholar 

  15. J. Ize, I. Massabò, and A. Vignoli, Degree theory for equivariant maps I, Transaction AMS, 315 (1989), 433–510.

    Article  MATH  Google Scholar 

  16. J. Ize, I. Massabò, and A. Vignoli, Degree theory for equivariant maps, the general S 1-action I, Memoirs AMS 100 (1992).

    Google Scholar 

  17. W. Krawceiwcz and P. Vivi, Generic bifurcations and equivariant degree, preprint.

    Google Scholar 

  18. W. Krawcewicz and J. Wu, Global bifurcation of time reversible systems, preprint.

    Google Scholar 

  19. N. Lloyd, Degree theory, Cambridge University Press, 1978.

    MATH  Google Scholar 

  20. J. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville, 1965.

    MATH  Google Scholar 

  21. J. Milnor, Lectures on the h-Cobordism Theorem, Princeton University Press, Princeton, 1965.

    MATH  Google Scholar 

  22. A. Parusiński, Gradient homotopies of gradient vector fields, Stadia Mathematica 46 (1990), 73–80.

    Google Scholar 

  23. G. Peschke, Degree of certain equivariant maps into a representation sphere, Topology Appl 59 (1994), 137–156.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. H. Rabinowitz, A note on topological degree for potential operators, J. Math. Anal. Appl. 51 (1975), 483–492.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Rybicki, Applications of degree for S 1-equivariant gradient maps to variational nonlinear problems with S 1-symmetries, preprint.

    Google Scholar 

  26. S. Rybicki, On Rabinowitz alternative for the Laplace-Beltrami operator on S n −1. Continua that meet infinity, preprint.

    Google Scholar 

  27. D. Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Szymczak, a personal communication.

    Google Scholar 

  29. A. H. Wallace, Differential Topology, First Steps, Benjamin, New York, 1968.

    MATH  Google Scholar 

  30. Z-.Q. Wang, Symmetries, Morse polynomials and applications to bifurcation problems, Acta Mathematica Sinica, New Series 6 (1990), 165–177.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this paper

Cite this paper

Gęba, K. (1997). Degree for Gradient Equivariant Maps and Equivariant Conley Index. In: Matzeu, M., Vignoli, A. (eds) Topological Nonlinear Analysis II. Progress in Nonlinear Differential Equations and Their Applications, vol 27. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4126-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4126-3_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8665-3

  • Online ISBN: 978-1-4612-4126-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics