Skip to main content

Abstract

Bone is a dynamic, highly vascularized tissue with the unique capacity to heal and to remodel depending on line of stress (Buckwalter et al, 1995ab). It exhibits the unlikely combination of high compressive strength and tensile strength due to the composite of calcium phosphate salts (hydroxyapatite) and collagen, respectively (Yaszemski et al, 1996a). It is difficult to find materials to mimic such a complex system when filling bone defects. However, current research capitalizes on the dynamic properties of bone by providing a biodegradable scaffold to guide healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altermatt S, Schwobel M, Pochon JP (1992): Operative treatment of solitary bone cysts with tricalcium phosphate ceramic: A 1 to 7 year follow-up. Eur J Pediatr Surg 2:180–182

    Article  PubMed  CAS  Google Scholar 

  • Aronow MA, Gerstenfeld LC, Owen TA, Tassinari MS, Stein GS, Lian JB (1990): Factors that promote progressive development of the osteoblast phenotype in cultured fetal rat calvaria cells. J Cell Phys 143:213–221

    Article  CAS  Google Scholar 

  • Bellows CG, Aubin JE, Heersche JN (1987): Physiological concentrations of glucocorticoids stimulate formation of bone nodules from isolated rat calvaria cells in vitro. Endocrinology 121:1985–1992

    Article  PubMed  CAS  Google Scholar 

  • Bellows CG, Heersche JN, Aubin JE (1990): Determination of the capacity for proliferation and differentiation of osteoprogenitor cells in the presence and absence of dexamethasone. Dev Biol 140:132–138

    Article  PubMed  CAS  Google Scholar 

  • Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JF, Brooks CE (1992): Producing and avoiding stress shielding. Laboratory and clinical observations of noncemented total hip arthroplasty. Orthop Rel Res 274:79–96

    Google Scholar 

  • Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM (1992): Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Imp 7:302–310

    CAS  Google Scholar 

  • Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996): Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146

    Article  PubMed  CAS  Google Scholar 

  • Bucholz RW, Carlton A, Holmes RE (1987): Hydroxy apatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 18:323–334

    PubMed  CAS  Google Scholar 

  • Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1995a): Bone biology part I: Structure, blood supply, cells, matrix, and mineralization. J Bone Joint Surg 77- A:1256–1275

    Google Scholar 

  • Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1995b): Bone biology part II: Formation, form, modeling, remodeling, and regulation of cell function.J Bone Joint Surg 77-A:1276–1289

    Google Scholar 

  • Constantz BR, Ison IC, Fulmer MT, Poser RD, Smith ST, Van Wagoner M, Ross J, Goldstein SA, Jupiter JB, Rosenthal DI (1995): Skeletal repair by in situ formation of the mineral phase of bone. Science 267:1796–1799

    Article  Google Scholar 

  • Cook SC, Baffes GC, Wolfe MW, Sampath K, Rueger DC, Whitecloud TS (1994): The effect of human recombinant osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint Surg 76A:827–838

    Google Scholar 

  • Copley LA, Reilly TM, Brighton CT (1994): Integrins and the transduction of mechanical stress into proliferation in rat osteoblasts. Trans Orthop Res Soc 19:306

    Google Scholar 

  • Dee KC, Rueger DC, Anderson TT, Bizios R (1996): Conditions which promote mineralization at the bone-implant interface: A model in vitro study. Biomaterials 17:209–215

    Article  PubMed  CAS  Google Scholar 

  • Dennis JE, Haynesworth SE, Young RG, Caplan AI (1992): Osteogenesis in marrow- derived mesenchymal cell porous ceramic composites transplanted subcutane- ously: Effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transpl 1:23–32

    CAS  Google Scholar 

  • Dolce C, Kinniburgh A J, Dziak R (1995): Proto-oncogene activation in osteoblast cells due to mechanical stretching. J Dent Res 74:153

    Google Scholar 

  • Frazier DD, Lathi VK, Gerhart TN, Altobelli DE, Hayes WC (1995): In-vivo degradation of a poly(propylene-fumarate) biodegradable particulate composite bone cement. Mater Res Soc Symp Proc 394:15–19

    Article  CAS  Google Scholar 

  • Gazdag AR, Lane JM, Glaser D, Forster RA (1995): Alternatives to autogenous bone graft: Efficacy and indications. J Am Acad Orthop Surg 3:1–8

    PubMed  Google Scholar 

  • Gehron RP, Fedarko NS, Hefferan TE (1993): Structure and molecular regulation of bone matrix proteins. J Bone Min Res 8 (suppl 2):S457-S65

    Google Scholar 

  • Gerhart TN, Hayes WC (1989): Bioerodible implant composition. United States Patent 4,843,112:1–16

    Google Scholar 

  • Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS (1983): The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech 16:965–97

    Article  Google Scholar 

  • Healy KE, Thomas CH, Rezania A, Kim JE, McKeown PJ, Lom B, Hockberger PE (1996): Kinetics of bone cell organization and mineralization on materials with patterned surface chemistry. Biomaterials 17:195–208

    Article  PubMed  CAS  Google Scholar 

  • Hollinger JO, Leong K (1996): Poly(a-hydroxy acids): Carriers for bone morphoge-netic proteins. Biomaterials 17:187–194

    Article  Google Scholar 

  • Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG (1994): Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res 28:1445–1453

    Article  Google Scholar 

  • Ishaug SL, Crane GM, Miller MJ, Yaszemski MJ, Mikos AG (1996a): Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res: in press

    Google Scholar 

  • Ishaug SL, Payne RG, Yaszemski MJ, Aufdemorte TB, Bizios R, Mikos AG (1996b): Osteoblast migration on poly(a-hydroxy esters). Bioteehn Bioeng: 50:443–151

    Google Scholar 

  • Jarcho M (1981): Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278

    Google Scholar 

  • Liebergall M, Young RG, Ozawa N, Reese JH, Davy DT, Goldberg VM, Caplan AI (1994): The effects of cellular manipulation and TGF-p in a composite bone graft. In: Bone Formation and Repair ; Brighton CT, Friedlaender GE, Lane JM, eds. Rosemont, IL: American Academy of Orthopaedic Surgeons

    Google Scholar 

  • Maniatopoulos C, Sodek J, Melcher AH (1988): Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res 254:317–330

    Google Scholar 

  • Marden LJ, Hollinger JO, Chaudhari A, Turek T, Schaub R, Ron E (1994): Recombinant bone morphogenetic protein-2 is superior to demineralized bone matrix in repairing craniotomies defects in rat. J Biomed Mater Res 28:1127–1138

    Article  PubMed  CAS  Google Scholar 

  • Miller MJ, Goldberg DP, Yasko AW, Lemon JC, Satterfield WC, Wake MC, Mikos AG (1996): Guided bone growth in sheep: a model for tissue-engineered bone flaps. Tissue Eng: 2:51–59

    Article  PubMed  CAS  Google Scholar 

  • Nefussi JR, Boy-Lefevre ML, Boulekbache H, Forest N (1985): Mineralization in vitro of matrix formed by osteoblasts isolated by collagenase digestion. Differentiation 29:160–168

    Article  PubMed  CAS  Google Scholar 

  • Norde W (1992): The behavior of proteins at interfaces, with special attention to the role of the structure stability of the protein molecule. Clin Mater 11:85–91

    Article  CAS  Google Scholar 

  • Petty W, Spanier S, Shuster JJ (1988): Prevention of infection after total joint replacement.J Bone Joint Surg 70-A:536–9

    Google Scholar 

  • Reddi AH (1994): Bone and cartilage differentiation. Curr Opin Genet Dev 4:737–744

    Article  PubMed  CAS  Google Scholar 

  • Robinson B, Hollinger JO, Szachowicz E, Brekke J (1995): Calvarial bone repair with porous D,L-polylactide. Otolaryngol Head Neck Surg 112:101–113

    Article  Google Scholar 

  • Sanderson JE (1988): Bone replacement and repair putty material from unsaturated polyester resin and vinyl pyrrolidone. United States Patent 4,722,948:1–14

    Google Scholar 

  • Stanford CM, Keller JC, Solursh M (1994): Bone cell expression on titanium surfaces is altered by sterilization treatments.J Dent Res 73:1061–1071

    PubMed  CAS  Google Scholar 

  • Sumner DR, Turner TM, Purchio AF, Gombotz WR, Urban RM, Galante JO (1995): Enhancement of bone ingrowth by transforming growth factor-p. J Bone Joint Surg 77-A: 1135–1147

    Google Scholar 

  • Thomson RC, Yaszemski MJ, Powers JM, Harrigan TP, Mikos AG (1995a): Poly(a- hydroxy ester)/short fiber hydroxyapatite composite foams for orthopedic application. Mater Res Soc Symp Proc 394:25–30

    Article  CAS  Google Scholar 

  • Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1995b): Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Edn 7:23–38

    Article  CAS  Google Scholar 

  • Toriumi DM, Kotler HS, Luxunberg DP, Holtrop ME, Wang EA (1991): Mandibular reconstruction with a recombinant bone-inducing factor: Functional, histologic, and biomechanical evaluation. Arch Otolaryngol Head Neck Surg 117:1101–1112

    PubMed  CAS  Google Scholar 

  • Urist MR (1965): Bone: Formation by autoinduction. Science 150:893–899

    Article  PubMed  CAS  Google Scholar 

  • Urist MR, Strates BS (1971): Bone morphogenetic protein. J Dent Res 50:1392–1406

    Article  PubMed  CAS  Google Scholar 

  • Urist MR, Silverman MF, Buring K, Dubuc FL, Rosenburg JM (1967): The bone induction principle. Clin Orthop Rel Res 53:243

    CAS  Google Scholar 

  • Vacanti CA, Kim W, Upton J, Mooney D, Vacanti JP (1995): The efficacy of periosteal cells compared to chondrocytes in the tissue engineered repair of bone defects. Tissue Eng 1:301–308

    Article  PubMed  CAS  Google Scholar 

  • Yamada KM (1991): Adhesive recognition sequences.J Biol Chem 266:12809–12812

    Google Scholar 

  • Yasko AW, Lane JM, Fellinger EJ, Rosen V, Wozney JM, Wang EA (1992): The healing of segmental bone defects, induced by recombinant human bone morphogenetic protein (rhBMP-2). J Bone Joint Surg 74-A:659–670

    Google Scholar 

  • Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Aufdemorte TB, Mikos AG (1995): The ingrowth of new bone tissue and initial mechanical properties of a degrading polymeric composite scaffold. Tissue Eng 1:41–52

    Article  PubMed  CAS  Google Scholar 

  • Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Mikos AG (1996a): Evolution of bone transplantation: Molecular, cellular, and tissue strategies to engineer human bone. Biomaterials 17:175–185

    Article  PubMed  CAS  Google Scholar 

  • Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Mikos AG (1996b): The in vitro degradation of a poly(propylene fumarate)-based composite material. Biomaterials: 17:2127–2130

    Article  PubMed  CAS  Google Scholar 

  • Zambonin G, Grano M (1995): Biomaterials in orthopedic surgery: Effects of different hydroxyapatites and demineralized bone matrix on proliferation rate and bone matrix synthesis by human osteoblasts. Biomaterials 16:397–402

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Bostrom, R.D., Mikos, A.G. (1997). Tissue Engineering of Bone. In: Atala, A., Mooney, D.J. (eds) Synthetic Biodegradable Polymer Scaffolds. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4154-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4154-6_12

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8677-6

  • Online ISBN: 978-1-4612-4154-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics