Skip to main content

The Canonical Correlations of Matrix Pairs and their Numerical Computation

  • Conference paper
Linear Algebra for Signal Processing

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 69))

Abstract

This paper is concerned with the analysis of canonical correlations of matrix pairs and their numerical computation. We first develop a decomposition theorem for matrix pairs having the same number of rows which explicitly exhibits the canonical correlations. We then present a perturbation analysis of the canonical correlations, which compares favorably with the classical first order perturbation analysis. Then we propose several numerical algorithms for computing the canonical correlations of general matrix pairs; emphasis is placed on the case of large sparse or structured matrices.

This work was supported in part by NSF grant DRC-8412314 and Army contract DAAL-03-90-G-0105

This work was supported in part by Army contract DAAL-03-90-G-0105

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.W. Anderson, An introduction to multivariate statistical analysis, John Wiley and Sons, New York 1958.

    MATH  Google Scholar 

  2. P. Besse, Edudie descriptive d’un process, Ph.D. thesis, Paul-Sabatier University 1979.

    Google Scholar 

  3. A. Bjorck, Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT 7 (1967), 1–21.

    Article  MathSciNet  Google Scholar 

  4. A. Bjorck, G.H. Golub, Numerical methods for computing angles between linear subspaces, Mathematics of Computation 27 (1973), 579–594.

    Article  MathSciNet  Google Scholar 

  5. J. Demmel, W. Gragg, On computing accurate singular values and eigenvalues of acyclic matrices, IMA Preprint Series 962, IMA, University of Minnesota 1992.

    Google Scholar 

  6. Y. Escoufier, Operators related to a data matrix, in Recent Developments in Statistics ( Amsterdam ), North Holland 1976.

    Google Scholar 

  7. G. H. Golub, C.F.Van Loan, Matrix computations, 2nd ed, Johns Hopkins University Press, Baltimore, Maryland 1989.

    MATH  Google Scholar 

  8. H. Hotelling, Relation between two sets of variates, Biometrika 28 (1936), 322–377.

    Google Scholar 

  9. A. Israels, Eigenvalue techniques for qualitative data, DSWO Press, Leiden 1987.

    Google Scholar 

  10. C. Jordan, Essai sur la géométrie à n dimensions, Bulletin de la Société Mathématique 3 (1875), 103–174.

    Google Scholar 

  11. J.R. Kettenring, Canonical analysis of several sets of variates, Biometrika 58 (1971), 433–451.

    Article  MathSciNet  MATH  Google Scholar 

  12. C.C. Paige, A note on a result of Sun Ji-guang: sensitivity of the cs and gsv decomposition, SIAM Journal on Numerical Analysis 21 (1984), 186–191.

    Article  MathSciNet  MATH  Google Scholar 

  13. C.C. Paige, M.A.Saunders, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Transaction on Mathematical Software 8 (1982), 43–71.

    Article  MathSciNet  MATH  Google Scholar 

  14. C.R. Rao, H.Yanai, General definition and decomposition of projectors and some application to statistical problems, J. Statistical Planning and Inference 3 (1979), 1–17.

    Article  MATH  Google Scholar 

  15. G.W. Stewart, (Remarks made at an IMA workshop), 1992.

    Google Scholar 

  16. G.W. Stewart, G.-J.Sun, Matrix perturbation theory, Academic Press, Boston 1990.

    MATH  Google Scholar 

  17. E. van der Burg, Nonlinear canonical correlation and some related technique, DSWO Press, Leiden 1988.

    Google Scholar 

  18. P.-A.Wedin, On angles between subspaces, Matrix Pencils, B.Kâgstrôm, A.Ruhe, (eds.) Springer, New York 1983, 263–285.

    Google Scholar 

  19. G. Xu, T. Kailath, Fast signal-subspace decompsotion — part I: ideal covariance matrices, (Manuscript submitted to ASSP), Information Systems Laboratory, Stanford University 1990.

    Google Scholar 

  20. H. Zha, The restricted singular value decomposition of matrix triplets, SIAM Journal on Matrix Analysis and Applications 12 (1991), 172–194.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Zha, A two-way chasing scheme for reducing a symmetric arrowhead matrix to tridiagonal form, Numerical Linear Algebra with Applications 1 (1992), 49–57.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Golub, G.H., Zha, H. (1995). The Canonical Correlations of Matrix Pairs and their Numerical Computation. In: Bojanczyk, A., Cybenko, G. (eds) Linear Algebra for Signal Processing. The IMA Volumes in Mathematics and its Applications, vol 69. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4228-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4228-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8703-2

  • Online ISBN: 978-1-4612-4228-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics