Skip to main content

Lyapunov Iterations for Solving Coupled Algebraic Riccati Equations of Nash Differential Games and Algebraic Riccati Equations of Zero-Sum Games

  • Conference paper
New Trends in Dynamic Games and Applications

Part of the book series: Annals of the International Society of Dynamic Games ((AISDG,volume 3))

Abstract

In this paper we study the symmetric coupled algebraic Riccati equations corresponding to the steady state Nash strategies. Under control-oriented assumptions, imposed on the problem matrices, the Lyapunov iterations are constructed such that the proposed algorithm converges to the nonnegative (positive) definite stabilizing solution of the coupled algebraic Riccati equations. In addition, the problem order reduction is achieved since the obtained Lyapunov equations are of the reduced-order and can be solved independently. As a matter of fact a parallel synchronous algorithm is obtained. A high-order numerical example is included in order to demonstrate the efficiency of the proposed algorithm. In the second part of this paper we have proposed an algorithm, in terms of the Lyapunov iterations, for finding the positive semidefinite stabilizing solution of the algebraic Riccati equation of the zero-sum differential games. The similar algebraic Riccati type equations appear in the H optimal control and related problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Abou-Kandil, G. Freiling, and G. Jank, Necessary conditions for constant solutions of coupled Riccati equations in Nash games, Systems & Control Letters, 21 (1993), 295–306.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Başar, Generalized Riccati equations in dynamic games, in The Riccati Equation, S. Bittanti, A. Laub, and J. Willems, eds., Springer- Verlag, 1991.

    Google Scholar 

  3. T. Başar and R Bernhard, H∞ Optimal Control and Related Minimax Design problems: A Dynamic Game Approach, Birkhauser, Boston, 1991.

    Google Scholar 

  4. T. Başar, A counterexample in linear-quadratic games: existence of non-linear Nash strategies, J. of Optimization Theory and Applications, 14 (1974), 425–430.

    Article  MATH  Google Scholar 

  5. R. Bellman, Monotone approximation in dynamic programming and calculus of variations, Proc. The National Academy of Science USA, 44 (1954), 1073–1075.

    Article  Google Scholar 

  6. R. Bellman, Dynamic Programming, Princeton University Press, 1957.

    Google Scholar 

  7. R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University Press, 1961.

    Google Scholar 

  8. D. Bernstein and W. Haddad, LQG control with an H∞ performance bound: A Riccati equation approach, IEEE Trans. Automatic Control, 34 (1989), 293–305.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models, Prentice Hall, Englewood Cliffs, 1987.

    MATH  Google Scholar 

  10. D. Bertsekas and J. Tsitsiklis, Some aspects of parallel and distributed iterative algorithms—A survey, Automatica, 27 (1991), 3–21.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Bingulac and H. Vanlandingham, Algorithms for Computer- Aided Design of Multivariate Control Systems, Marcel Dekker, New York, 1993.

    Google Scholar 

  12. Z. Gajic and T-Y. Li, Simulation results for two new algorithms for solving coupled algebraic Riccati equations, Third Int. Symp. on Differential Games, Sophia Antipolis, Prance, June 1988.

    Google Scholar 

  13. Z. Gajic and X. Shen, Parallel Algorithms for Optimal Control of Large Scale Linear Systems, Springer Verlag, London, 1993.

    MATH  Google Scholar 

  14. G. Hewer, Existence theorems for positive semidefinite and sign indefinite stabilizing solutions of H Riccati equations, SIAM J. Control and Optimization, 31 (1993), 16–29.

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Jodar and H. Abou-Kandil, Kronecker products and coupled matrix Riccati differential equations, Linear Algebra and Its Applications, 121 (1989), 39–51.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Kantorovich and G. Akilov, Functional Analysis in Normed Spaces, Macmillan, New York, 1964.

    MATH  Google Scholar 

  17. D. Kleinman, On an iterative techniques for Riccati equation computations, IEEE Trans. Automatic Control, 13 (1968), 114–115.

    Article  Google Scholar 

  18. H. Khalil and P. Kokotovic, Feedback and well-posedness of singularly perturbed Nash games, IEEE Trans. Automatic Control, 24 (1979), 699–708.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Khalil, Multimodel design of a Nash strategy, J. Optimization Theory and Application, (1980), 553–564.

    Google Scholar 

  20. D. Kirk, Optimal Control Theory, Prentice Hall, Englewood Cliffs, 1970.

    Google Scholar 

  21. N. Krikelis and A. Rekasius, On the solution of the optimal linear control problems under conflict of interest, IEEE Trans. Automatic Control, 16 (1971), 140–147.

    Article  MathSciNet  Google Scholar 

  22. V. Kucera, A contribution to matrix quadratic equations, IEEE Trans. Automatic Control, 17 (1972), 344–347.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Larson, A survey of dynamic programming computational procedures, IEEE Trans. Aut. Control, 12 (1967), 767–774.

    Article  Google Scholar 

  24. R. Leake and R. Liu, Construction of suboptimal control sequences, SIAM J. Control, 5 (1967), 54–63.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Levine and T. Vilis, On-line learning optimal control using successive approximation techniques, IEEE Trans. Aut. Control, 19, (1973) 279–284.

    Article  Google Scholar 

  26. E. Mageriou, Values and strategies for infinite time linear quadratic games, IEEE Trans. Automatic Control, 21 (1976), 547–550.

    Article  MathSciNet  Google Scholar 

  27. E. Mageriou, Iterative techniques for Riccati game equations, J. Optimization Theory and Applications, 22 (1977), 51–61.

    Article  MathSciNet  Google Scholar 

  28. E. Mageriou and H. Ho, Decentralized stabilization via game theoretic methods, Automatica, 13 (1977), 393–399.

    Article  Google Scholar 

  29. M. Mariton, Jump Linear Systems in Automatic Control, Marcell Dekker, New York, Basel, 1990.

    Google Scholar 

  30. G. Mil’shtein, Successive approximation for solution of one optimum problem, Auto, and Rem. Control, 25 (1964), 298–306.

    Google Scholar 

  31. G. Olsder, Comment on a numerical procedure for the solution of differential games, IEEE Trans. Automatic Control, 20 (1975), 704–705.

    Article  MATH  Google Scholar 

  32. U. Ozguner and W. Perkins, A series solution to the Nash strategy for large scale interconnected systems, Automatica, 13 (1977), 313–315.

    Article  Google Scholar 

  33. G. Papavassilopoulos, J. Medanic, and J. Cruz, On the existence of Nash strategies and solutions to coupled Riccati equations in linear-quadratic games, J. of Optimization Theory and Applications, 28 (1979), 49–75.

    Article  MathSciNet  MATH  Google Scholar 

  34. I. Peterson, Disturbance attenuation and H∞ optimization: A design method based on the algebraic Riccati equation, IEEE Trans. Automatic Control, 32 (1987), 427–429.

    Article  Google Scholar 

  35. I. Peterson, Some new results on algebraic Riccati equations arising in linear quadratic differential games and stabilization of uncertain linear systems, Systems & Control Letters, 10 (1988), 341–348.

    Article  MathSciNet  Google Scholar 

  36. Peterson and C. Hollot, A Riccati approach to the stabilization of uncertain linear systems, Automatica 22 (1986), 397–411.

    Article  Google Scholar 

  37. B. Petrovic and Z. Gajic, The recursive solution of linear quadratic Nash games for weakly interconnected systems, J. Optimization Theory and Application, 56 (1988), 463–477.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Starr and Y. Ho, Nonzero-sum differential games, J. of Optimization Theory and Applications, 3 (1969), 184–206.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Tabak, Numerical solution of differential game problems, Int. J. Systems Sci., 6 (1975), 591–599, 1975.

    Article  MATH  Google Scholar 

  40. E. Vaisbord, An approximate method for the synthesis of optimal control, Auto, and Rem. Control, 24 (1963), 1626–1632.

    Google Scholar 

  41. W. Wonham, On a matrix Riccati equation of stochastic control, SIAM J. on Control, 6 (1968), 681–697.

    Article  MathSciNet  Google Scholar 

  42. K. Zhou and P. Khargonekar, An algebraic Riccati equation approach to H∞ optimization, Systems & Control Letters, 11 (1987), 85–91.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Boston

About this paper

Cite this paper

Li, TY., Gajic, Z. (1995). Lyapunov Iterations for Solving Coupled Algebraic Riccati Equations of Nash Differential Games and Algebraic Riccati Equations of Zero-Sum Games. In: Olsder, G.J. (eds) New Trends in Dynamic Games and Applications. Annals of the International Society of Dynamic Games, vol 3. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4274-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4274-1_17

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8719-3

  • Online ISBN: 978-1-4612-4274-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics