Skip to main content

Brain-Stem Control of Ingestive Behavior

  • Chapter
The Physiological Mechanisms of Motivation

Abstract

Hunger is a psychological construct, usually operationally defined as being directly proportional to hours of food deprivation (Silverstone, 1976), but assumed to be a neurophysiological reality. As with most psychological constructs, however, the neural substrates representing hunger have yielded slowly to neurophysiological analysis. This resistance to reductionistic assaults stems from oversimplifying the problem in the first place, and then trying to locate the oversimplification within the brain. Although neither oversimplification has been eliminated, both are now recognized, and this recognition has diverted scientific energy from the frontal assault on the hypothalamus initiated in Ranson’s laboratory and led by John Brobeck and his colleagues almost 40 years ago (Brobeck, Tepperman, & Long, 1943; Anand & Brobeck, 1951; Hetherington & Ranson, 1940) into subsidiary investigations aimed at deciphering hunger variables and integrating psychological concepts into neurophysiological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  • Anand, B. K., & Brobeck, J. R. Hypothalamic control of food intake in rats and cats. Yale Journal of Biology and Medicine, 1951, 24, 123–140.

    PubMed  Google Scholar 

  • Anand, B. K., Chhina, G. S., Sharma, K. N., Dua, S., & Singh, B. Activity of single neurons in the hypothalamic feeding centers: Effect of glucose. American Journal of Physiology, 1964, 207, 1146–1154.

    PubMed  Google Scholar 

  • Ashe, J. H., & Nachman, M. Neural mechanisms in taste aversion learning. In E. Stellar & A. Epstein (Eds.), Progress in psychobiology and physiological psychology (Vol. 9). New York: Academic Press, 1980.

    Google Scholar 

  • Astrom, K. E. On the central course of afferent fibers in the trigeminal, facial, glossopharyngeal, and vagal nerves in their nuclei in the house. Acta Physiologica Scandinavica, 1953, 29, 206–320 (Supp. 106).

    Google Scholar 

  • Ball, G. Vagotomy: Effect on electrically elicited eating and self-stimulation in the lateral hypothalamus. Science, 1974, 184, 484–485.

    Article  PubMed  Google Scholar 

  • Bard, P., & Macht, M. B. The behavior of chronically decerebrate cats. In Ciba Foundation symposium on the neurological bases of behavior. London: Churchill, 1958.

    Google Scholar 

  • Beckstead, R., & Norgren, R. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. Journal of Comparative Neurology, 1979, 184, 455–472.

    Article  PubMed  Google Scholar 

  • Berridge, K., Grill, H. J., & Norgren, R. The relation of consummatory responses and preabsorptive insulin release to palatability and learned taste aversions. Journal of Comparative and Physiological Psychology, 1981, 95, 363–382.

    Article  PubMed  Google Scholar 

  • Braun, J. J. Neocortex and feeding behavior in the rat. Journal of Comparative and Physiological Psychology, 1975, 89, 507–522.

    Article  PubMed  Google Scholar 

  • Brobeck, J. R., Tepperman, J., & Long, C. N. H. Experimental hypothalamic hyperphagic in the albino rat. Yale Journal of Biology and Medicine, 1943, 15, 831–853.

    PubMed  Google Scholar 

  • Chase, M. H., & McGinty, D. J. Modulation of spontaneous reflex activity of the jaw musculature by orbital cortical stimulation in the freely-moving cat. Brain Research, 1970, 19, 117–126.

    Article  PubMed  Google Scholar 

  • Demente, C. D., Sutin, J., & Silverstone, J. T. Changes in electrical activity of the medulla on the intravenous injection of hypertonic solutions. American Journal of Physiology, 1957, 188, 193–198.

    Google Scholar 

  • Coil, J., & Norgren, R. Cells of origin of motor axons in the subdiaphragmatic vagus of the rat. Journal of the Autonomic Nervous System, 1979, 1, 203–210.

    Article  PubMed  Google Scholar 

  • Coil, J. D., & Norgren, R. Taste aversions conditioned with intravenous copper sulfate: Attenuation by ablation of the area postrema. Brain Research, 1981, 212, 425–433.

    Article  PubMed  Google Scholar 

  • Coil, J. D., Rogers, R., Garcia, J., & Novin, D. Conditioned taste aversions: Vagal and circulatory mediation of the toxic US. Behavioral Biology, 1978, 24, 509–519.

    Article  PubMed  Google Scholar 

  • Cole, S. O. Changes in the feeding behavior of rats after amygdala lesions. Behavioral Biology, 1974, 12, 265–270.

    Article  PubMed  Google Scholar 

  • Coons, E. E. Motivational correlates of eating elicited by electrical stimulation in the lateral hypothalamic feeding areas. Unpublished doctoral dissertation, Yale University, 1964.

    Google Scholar 

  • Coons, E. E., Levak, M., & Miller, N. E. Lateral hypothalamus: Learning of food-seeking response motivated by electrical stimulation. Science, 1965, 150, 1320–1321.

    Article  PubMed  Google Scholar 

  • Craig, W. Appetites and aversions as constituents of instincts. Biological Bulletin, 1918, 34, 91–107.

    Article  Google Scholar 

  • DiRocco, R. J., & Grill, H. J. The forebrain is not essential for sympathoadrenal hyperglycemic response to glucoprivation. Science, 1979, 204, 1112–1114.

    Article  PubMed  Google Scholar 

  • Doty, R. W. Neural organization of deglutition. In C. F. Code & C. L. Prosser (Eds.), Handbook of physiology, Section 6: Alimentary canal (Vol. 4). Washington, D.C.: American Physiological Society, 1968.

    Google Scholar 

  • Fitzsimons, J. Thirst. Physiological Reviews, 1972, 52, 468–561.

    PubMed  Google Scholar 

  • Fluharty, S. J. & Grill, H. J. Taste reactivity of lateral hypothalamic lesioned rats: Effects of deprivation and tube feeding. Society for Neuroscience Abstracts, 1981, 7, 28.

    Google Scholar 

  • Flynn, J. P. Patterning mechanisms, patterned reflexes, and attack behavior in cats. In J. K. Cole & D. D. Jensen (Eds.), Nebraska Symposium on Motivation (Vol. 20). Lincoln: University of Nebraska Press, 1972.

    Google Scholar 

  • Flynn, J. P., Edwards, S. B., & Bandler, R. J., Jr. Changes in sensory and motor systems during centrally elicited attack. Behavioral Sciences, 1971, 16, 1–19.

    Article  Google Scholar 

  • Fonberg, E. Amygdala functions within the alimentary system. Acta Neurobiologiae Experimentalis, 1974, 34, 435–466.

    PubMed  Google Scholar 

  • Friedman, M., & Stricker, E. The physiological psychology of hunger: A physiological perspective. Psychological Review, 1976, 83, 409–431.

    Article  PubMed  Google Scholar 

  • Fuxe, K. Evidence for the existence of monoamine neurons in the central nervous system, IV: Distribution of monoamine nerve terminals in the central nervous system. Acta Physiologica Scandinavica, 1965, 64, 37–85.

    Article  Google Scholar 

  • Freed, E. K., & Grill, H. J. Levels of function in rat grooming behavior. Society for Neuroscience Abstracts, 1979, 5, 468.

    Google Scholar 

  • Glickman, E., & Schiff, B. B. A biological theory of reinforcement. Psychological Review, 1967, 74, 81–109.

    Article  PubMed  Google Scholar 

  • Grill, H. J. Sucrose as an aversive stimulus. Society for Neuroscience Abstracts, 1975, 1, 525.

    Google Scholar 

  • Grill, H. J. Production and regulation of ingestive consummatory behavior in the chronic decerebrate rat. Brain Research Bulletin, 1980, 5, 79–87.

    Article  Google Scholar 

  • Grill, H. J., & Miselis, R. R. Lack of ingestive compensation to osmotic stimuli in chronic decerebrate rats. American Journal of Physiology, 1981, 240, R81–86.

    PubMed  Google Scholar 

  • Grill, H. J., & Norgren, R. Chronic decerebrate rats demonstrate satiation, but not baitshyness. Science, 1978, 201, 267–269. (a)

    Article  PubMed  Google Scholar 

  • Grill, H. J., & Norgren, R. Neurological tests and behavioral deficits in chronic thalamic and chronic decerebrate rats. Brain Research, 1978, 143, 299–312. (b)

    Article  PubMed  Google Scholar 

  • Grill, H. J., & Norgren, R. The taste reactivity test, I: Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Research, 1978, 143, 263–279. (c)

    Article  PubMed  Google Scholar 

  • Grill, H. J., & Norgren, R. The taste reactivity test, II: Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Research, 1978, 143, 281–297. (d)

    Article  PubMed  Google Scholar 

  • Grossman, S. Role of the hypothalamus in the regulation of food and water intake. Psychological Review, 1975, 82, 200–224.

    Article  PubMed  Google Scholar 

  • Haberich, F. Osmoreception in the portal circulation. Federation Proceedings, 1968, 27, 1137–1141.

    PubMed  Google Scholar 

  • Hess, W. R. The functional organization of the diencephalon. New York: Grune & Stratton, 1958.

    Google Scholar 

  • Hetherington, A. W., & Ranson, S. W. Hypothalamic lesions and adiposity in the rat. Anatomical Record, 1940, 78, 149–172.

    Article  Google Scholar 

  • Hetherington, A., & Ranson, S. Effect of early hypophysectomy on hypothalamic obesity. Endocrinology, 1942, 31, 30–34.

    Article  Google Scholar 

  • Hiiemae, K., & Ardran, G. A cinefluorographic study of mandibular movement during feeding in the rat (Rattus norvegicus). Journal of Zoology (London), 1968, 154, 139–154.

    Article  Google Scholar 

  • Hinde, R. A. Animal behaviour: A synthesis of ethology and comparative psychology (2nd ed.). New York: McGraw-Hill, 1970.

    Google Scholar 

  • Hoebel, B. G. Feeding and self-stimulation. Annals of the New York Academy of Sciences, 1969, 157, 758–778.

    Article  PubMed  Google Scholar 

  • Hoebel, B. G., & Teitelbaum, P. Hypothalamic control of feeding and self-stimulation. Science, 1962, 135, 375–377.

    Article  PubMed  Google Scholar 

  • Kaada, B. R. Stimulation and regional ablation of the amygdaloid complex with reference to functional representations. In B. E. Eleftheriou (Ed.), The neurobiology of the amygdala. New York: Plenum Press, 1972.

    Google Scholar 

  • Kolb, B., & Nonneman, A. Prefrontal cortex and the regulation of food intake in the rat. Journal of Comparative and Physiological Psychology, 1975, 88, 806–815.

    Article  PubMed  Google Scholar 

  • Kolb, B., Whishaw, I. Q., & Schallert, T. Aphagia, behavior sequencing and body weight set point following orbital frontal lesions in rats. Physiology and Behavior, 1977, 19, 93–103.

    Article  PubMed  Google Scholar 

  • LeMagnen, J. Habits and food intake. In C. F. Code (Ed.), Handbook of physiology, Section 6: Alimentary canal (Vol. 1, Control of food and water intake). Washington, D.C.: American Physiological Society, 1967.

    Google Scholar 

  • LeMagnen, J., Devos, M., Gaudilliere, J.-P., Louis-Sylvestre, J., & Talion, S. Role of a lipostatic mechanism in regulation by feeding of energy balance in rats. Journal of Comparative and Physiological Psychology, 1973, 84, 1–23.

    Article  Google Scholar 

  • Lindvall, O., & Bjorklund, A. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiologica Scandinavica, 1974, 1–48 (Suppl. 412).

    Google Scholar 

  • Lund, J. P., & Dellow, P. G. Rhythmical masticatory activity of hypoglossal motoneurons responding to an oral stimulus. Experimental Neurology, 1973, 40, 243–246.

    Article  PubMed  Google Scholar 

  • Mabry, P. D., & Campbell, B. A. Food-deprivation-induced behavioral arousal: Mediation by hypothalamus and amygdala. Journal of Comparative and Physiological Psychology, 1975, 89, 19–38.

    Article  PubMed  Google Scholar 

  • Macht, M. B. Subcortical localization of certain “taste” responses in the cat. Federation Proceedings, 1951, 20, 88.

    Google Scholar 

  • Margules, D., & Olds, J. Identical “feeding” and “reward” systems in the lateral hypothalamus of rats. Science, 1962, 135, 374–375.

    Article  PubMed  Google Scholar 

  • Marshall, J., Levitan, D., & Stricker, E. Activation-induced restoration of sensorimotor functions in rats with dopamine-depleting brain lesions. Journal of Comparative and Physiological Psychology, 1976, 90, 536–546.

    Article  PubMed  Google Scholar 

  • Marshall, J., & Teitelbaum, P. Further analysis of sensory inattention following lateral hypothalamic damage in rats. Journal of Comparative and Physiological Psychology, 1974, 86, 375–395.

    Article  PubMed  Google Scholar 

  • Marshall, J. F., Turner, B. H., & Teitelbaum, P. Sensory neglect produced by lateral hypothalamic damage. Science, 1971, 174, 523–525.

    Article  PubMed  Google Scholar 

  • Mayer, J. Glucostatic mechanism of regulation of food intake. New England Journal of Medicine, 1953, 249, 13–16.

    Article  PubMed  Google Scholar 

  • Mayer, J., & Arees, E. A. Ventromedial glucoreceptor system. Federation Proceedings, 1968, 27, 1345–1348.

    PubMed  Google Scholar 

  • McFarland, D. J. Decision making in animals. Nature, 1977, 269, 15–21.

    Article  Google Scholar 

  • Miller, F. R., & Sherrington, C. S. Some observations on the bucco-pharyngeal stage of reflex deglutition in the cat. Quarterly Journal of Experimental Physiology, 1916, 9, 147–186.

    Google Scholar 

  • Miller, N. E. Experiments on Motivation: Studies combining psychological, physiological, and pharmacological techniques. Science, 1957, 126, 1271–1278.

    Article  PubMed  Google Scholar 

  • Mogenson, G. J., & Phillips, A. G. Motivation: A psychological construct in search of a physiological substrate. Progress in Psychobiology and Physiological Psychology, 1976, 6, 189–243.

    Google Scholar 

  • Mook, D. G. Saccharin preference in the rat: Some unpalatable findings. Psychological Review, 1974, 81, 475–490.

    Article  PubMed  Google Scholar 

  • Morgane, P. J. Alterations in feeding and drinking behavior of rats with lesions in globi pallidi. American Journal of Physiology, 1961, 201, 420–428.

    PubMed  Google Scholar 

  • Nachman, M., & Ashe, J. H. Learned taste aversions in rats as a function of dosage, concentration, and route of administration of LiCl. Physiology and Behavior, 1973, 10, 73–78.

    Article  PubMed  Google Scholar 

  • Norgren, R. A synopsis of gustatory neuroanatomy. In J. LeMagnen and P. MacLeod (Eds.), Olfaction and taste, VI. London: Information Retrieval Ltd., 1977.

    Google Scholar 

  • Norgren, R. Flavor and the neural organization of feeding behavior. In C. M. Apt (Ed.), Flavor: Its chemical, behavioral, and commercial aspects. Boulder: West-view Press, 1978.

    Google Scholar 

  • Novin, D., & Oomura, Y. (Eds.). Integration of central and peripheral receptors in hunger and energy metabolism. Brain Research Bulletin, 1980, 5 (Suppl. 4).

    Google Scholar 

  • Oomura, Y. Significance of glucose, insulin and free fatty acid on the hypothalamic feeding and satiety neurons. In D. Novin, W. Wyrwicka, & G. Bray (Eds.), Hunger: Basic mechansims and clinical implications. New York: Raven Press, 1976.

    Google Scholar 

  • Oomura, Y., Ooyama, H., Yamamoto, T., & Naka, F. Reciprocal relationship of the lateral and ventromedial hypothalamus in the regulation of food intake. Physiology and Behavior, 1967, 2, 97–115.

    Article  Google Scholar 

  • Phillips, M. I., & Norgren, R. A rapid method for permanent implantation of an intraoral fistula in rats. Behavioral Research Methods and Instrumentation, 1970, 2, 124.

    Article  Google Scholar 

  • Powley, T. The ventromedial hypothalamic syndrome, satiety and a cephalic phase hypothesis. Psychological Review, 1977, 84, 89–126.

    Article  PubMed  Google Scholar 

  • Powley, T., & Opshal, C. Ventromedial hypothalamic obesity abolished by subdiaphragmatic vagotomy. American Journal of Physiology, 1974, 226, 25–33.

    Google Scholar 

  • Richter, C. P. Total self-regulatory functions in animals and human beings. Harvey Lectures, 1943, 38, 63–103.

    Google Scholar 

  • Richter, C. P., Holt, L. E., & Bariare, B. Nutritional requirements for normal growth and reproduction in rats studied by the self-selection method. American Journal of Physiology, 1938, 122, 734–744.

    Google Scholar 

  • Ritter, S., McGlone, J. J., & Kelley, K. W. Absence of lithium-induced taste aversion after area postrema lesion. Brain Research, 1980, 201, 501–506.

    Article  PubMed  Google Scholar 

  • Rogers, R., Novin, D., & Butcher, L. Electrophysiological and neuroanatomical studies of hepatic portal osmo- and sodium-receptive afferent projections within the brain. Journal of the Autonomic Nervous System, 1979, 1, 183–202.

    Article  PubMed  Google Scholar 

  • Rozin, P. Are carbohydrate and protein intakes separately regulated? Journal of Comparative and Physiological Psychology, 1968, 65, 23–29.

    Article  PubMed  Google Scholar 

  • Rozin, P., & Kalat, J. W. Specific hungers and poison avoidance as adaptive specializations of learning. Psychological Review, 1971, 78, 459–486.

    Article  PubMed  Google Scholar 

  • Schwartz, N., & Kling, A. The effect of amygdaloid lesions on feeding, grooming, and reproduction in rats. Acta Neuroregulation, 1964, 26, 12–34.

    Article  Google Scholar 

  • Sessle, B. J., & Hannam, A. G. (Eds.). Mastication and swallowing: Biological and clinical correlates. Toronto: University of Toronto Press, 1976.

    Google Scholar 

  • Sessle, B. J., & Kenny, D. J. Control of tongue and facial motility: Neural mechanisms that may contribute to movements such as swallowing and sucking. In J. F. Bosma (Ed.), Fourth symposium on oral sensation and perception. Bethesda, Md.: USDHEW, National Institutes of Health, 1973.

    Google Scholar 

  • Silverstone, J. T. The CNS and feeding: Group report. In Dahlem workshop on appetite and food intake. Berlin: Abakon Verlagsgesellschaft, 1976.

    Google Scholar 

  • Sorenson, C. A., & Ellison, G. D. Striatal organization of feeding behavior in the decorticate rat. Experimental Neurology, 1970, 29, 162–179.

    Article  PubMed  Google Scholar 

  • Stellar, E. The physiology of motivation. Psychological Review, 1954, 61, 5–22.

    Article  PubMed  Google Scholar 

  • Storey, A. B. Laryngeal initiation of swallowing. Experimental Neurology, 1968, 20, 359–365. (a)

    Article  PubMed  Google Scholar 

  • Storey, A. B. A functional analysis of sensory units innervating epiglottis and larynx. Experimental Neurology, 1968, 20, 366–383. (b)

    Article  PubMed  Google Scholar 

  • Teitelbaum, P. Levels of integration of the operant. In W. K. Honig & J. E. R. Staddon (Eds.), Handbook of operant behavior. Englewood Cliffs, N. J.: Prentice-Hall, 1977.

    Google Scholar 

  • Teitelbaum, P., & Epstein, A. N. The lateral hypothalamic syndrome: Recovery of feeding and drinking after lateral hypothalamic lesions. Psychological Review, 1962, 69, 74–90.

    Article  PubMed  Google Scholar 

  • Teitelbaum, P., Schallert, T., de Ryck, M., Whishaw, I. Q., & Golani, I. Motor subsystems in motivated behavior. In R. F. Thompson, L. H. Hicks, & V. B. Shvyrokov (Eds.), Neural mechanisms of goal-directed behavior and learning. New York: Academic Press, 1980.

    Google Scholar 

  • Tinbergen, N. The study of instinct. Oxford, England: Clarendon Press, 1951.

    Google Scholar 

  • Toates, F. M. Homeostasis and drinking. Behavioral and Brain Sciences, 1979, 2, 95–139.

    Article  Google Scholar 

  • Torvik, A. Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures: An experimental study in the rat. Journal of Comparative Neurology, 1956, 106, 51–141.

    Article  PubMed  Google Scholar 

  • Ungerstedt, U. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiologica Scandinavica, 1971, 82 (Suppl. 367). (a)

    Google Scholar 

  • Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiologica Scandinavica, 1971, 82, 1–48 (Suppl. 367). (b)

    Google Scholar 

  • Vanderwolf, C. H., Kolb, B., & Cooley, R. Behavior of the rat after removal of neocortex and hippocampus formation. Journal of Comparative and Physiological Psychology, 1978, 92, 156–175.

    Article  PubMed  Google Scholar 

  • Wang, G. H., & Akert, K. Behavior and reflexes of chronic striatal cats. Archives Italiennes de Biologie, 1962, 100, 48–85.

    Google Scholar 

  • Weijs, W. A., & Dantuma, R. Electromyography and mechanics of mastication in the albino rat. Journal of Morphology, 1975, 146, 1–34.

    Article  PubMed  Google Scholar 

  • Wirsig, C. R. & Grill, H. J. The contribution of the rat’s neocortex to ingestive control: I. Latent learning for the taste of sodium chloride. Journal of Comparative and Physiological Psychology, 1982, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Norgren, R., Grill, H. (1982). Brain-Stem Control of Ingestive Behavior. In: Pfaff, D.W. (eds) The Physiological Mechanisms of Motivation. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5692-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5692-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5694-6

  • Online ISBN: 978-1-4612-5692-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics