Skip to main content

Special Values of Zeta Functions Associated with Self-Dual Homogeneous Cones

  • Chapter
Manifolds and Lie Groups

Part of the book series: Progress in Mathematics ((PM,volume 14))

Abstract

To explain the main idea of this paper, and also to fix some notations, we start with reviewing the classical case of Riemann zeta function. As usual we set

$$\varsigma \left( s \right) = \sum\limits_{n = 1}^\infty {{n^{ - s}}} \quad \left( {Re\,s >1} \right)$$

,

$$\Gamma \left( s \right) = \int\limits_0^\infty {{x^{s - 1}}{e^{ - x}}dx\quad \left( {{\mathop{\rm Re}\nolimits} \,s >0} \right)}$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ash et al., Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, 1975.

    MATH  Google Scholar 

  2. H. Braun and M. Koecher, Jordan-Algebren, Springer-Verlag, 1966.

    Book  MATH  Google Scholar 

  3. S.G. Gindikin, “Analysis in homogeneous domains,” Uspehi Mat. Nauk. 19 (1964), 3–92; = Russian Math. Survey 19 (1964), 1–89.

    MathSciNet  MATH  Google Scholar 

  4. S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962.

    MATH  Google Scholar 

  5. M. Koecher, “Positivitätsbereiche im IRn,” Amer. J. Math. 79 (1957), 575–596.

    Article  MathSciNet  MATH  Google Scholar 

  6. H.L. Resnikoff, “On a class of linear differential equations for automorphic forms in several complex variables,” Amer. J. Math. 95 (1973), 321–331.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Satake, Algebraic Structures of Symmetric Domains, Iwanami-Shoten and Princeton Univ. Press, 1980.

    MATH  Google Scholar 

  8. M. Sato and T. Shintani, “On zeta functions associated with preho-mogeneous vector spaces,” Ann. of Math. 100 (1974), 131–170.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Shintani, “On Dirichlet series whose coefficients are class-numbers of integral binary cubic forms,” J. Math. Soc. Japan 2k(1972), 132–188.

    Article  MathSciNet  Google Scholar 

  10. T. Shintani, “On zeta-functions associated with the vector space of quadratic forms,” J. Fac. Sci. Univ. Tokyo 22 (1975), 25–65.

    MathSciNet  MATH  Google Scholar 

  11. T. Shintani, “On evaluation of zeta functions of totally real algebraic number fields at non-positive integers,” J. Fac. Sci. Univ. Tokyo 23 (1976), 393–417.

    MathSciNet  MATH  Google Scholar 

  12. C.L. Siegel, “Über die Zetafunktionen indefiniter quadratischer Formen,” Math. Z. 43 (1938), 682–708.

    Article  MathSciNet  Google Scholar 

  13. C.L. Siegel, “Berechnung von Zetafunktionen an ganzzähl igen Stellen,” Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. 1968, 7–38.

    Google Scholar 

  14. A. Kurihara, “On the values at non-negative integers of Siegel’s zeta functions of Q-anisotropic quadratic forms with signature (1, n-1),” to appear in J. Fac. Sci., Univ. Tokyo.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Satake, I. (1981). Special Values of Zeta Functions Associated with Self-Dual Homogeneous Cones. In: Hano, Ji., Morimoto, A., Murakami, S., Okamoto, K., Ozeki, H. (eds) Manifolds and Lie Groups. Progress in Mathematics, vol 14. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5987-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5987-9_19

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-5989-3

  • Online ISBN: 978-1-4612-5987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics