Skip to main content

Homogeneous Spaces from a Complex Analytic Viewpoint

  • Chapter
Manifolds and Lie Groups

Part of the book series: Progress in Mathematics ((PM,volume 14))

Abstract

Manifolds having many automorphisms play a fundamental role in geometry. If X is a compact complex manifold, then the group Aut(X) of holomorphic automorphisms of X is, when equipped with the compact-open topology, a complex Lie group. If G = Aut(X), then an orbit G(p) , p∈X, may be holomorphical ly identified with the quotient manifold G/H, where H := {g ∈ G|g(p) = p} is the isotropy group of the G-action at p. Thus, studying quotients G/H of a complex Lie group G by a closed subgroup H becomes relevant. A natural first step is to analyze the structure of compact homogeneous spaces X = G/H. In the early 1950’s, with development of Lie theory along with the theory of algebraic groups, a number of very sharp results were obtained by algebraic methods. The works of Borel (e.g., [10]), Goto [22], Tits [64] and Wang [67] are typical of this direction. Later, but still in an algebraic geometry spirit, many general methods were developed (e.g., see the papers of Hochschild, Mostow, Rosenlicht et al.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahiezer, D.N., “Cohomology of compact complex homogeneous spaces,” Math. USSR, Sbornik 13, 285–296 (1971).

    Article  Google Scholar 

  2. Ahiezer, D.N., “Dense orbits with two ends,” Math. USSR, Izvestija 11, 293–307 (1977).

    Article  Google Scholar 

  3. Ahiezer, D.N., “Algebraic groups acting transitively in the complement of a homogeneous hypersurface,” Soviet Math. Dokl. 20, 278–281 (1979).

    Google Scholar 

  4. Akao, K., “On prehomogeneous compact Kähler manifolds,” Proc. Jap. Acad. 49, 483–485 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  5. Barth, W., Oeljeklaus, E., “Über die Albanese-AbbiIdung einer fast homogenen Kähler-Mannigfaltigkeit,” Math, Ann. 211, 47–62 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  6. Barth, W., Otte, M., “Über fast-uniforme Untergruppen komplexer Liegruppen and auflösbare komplexe Mannigfaltigkeiten,” Comm. Math. Helv. 44, 269–281 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  7. Barth, W., Otte, M., “Invariante holomorphe Funktionen auf reduktiven Liegruppen,” Math. Ann. 201, 97–112 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bialynicki-Birula, A., Hochschild, G., Mostow, G.D., “Extension of representations of algebraic linear groups,” Am. J. Math. 85, 131–144 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  9. Blanchard, A., “Sur les variétés analytiques complexes,” Ann. Soi. Ec. Norm. Sup. 73, 157–202 (1956).

    MathSciNet  MATH  Google Scholar 

  10. Borel, A., “Kälhlerian coset spaces of semisimple Lie groups,” Proc. Nat. Acad. Sci. USA 40, 1147–1151 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  11. Borel, A., “Les bouts des espaces homogènes de groupes de Lie,” Ann. of Math. 58, 443–457 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  12. Borel, A., “Symmetric compact complex spaces,” Arch. Math. 33, 49–56 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  13. Borel, A., Remmert, R., “Über kompakte homogene Kählersche Mannigfaltigkeiten,” Math. Ann. 145, 429–439 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  14. Brenton, L., Morrow, J., “Compact i fications of (cn),” Trans. Am. Math. Soc. 246, 139–153 (1978).

    MathSciNet  MATH  Google Scholar 

  15. Burns, D., Shnider, S., “Spherical hypersurfaces in complex manifolds,” Inv. Math. 33, 223–246 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  16. Carrell, J., Howard, A., Kosniowski, C., “Holomorphic vector fields on complex surfaces,” Math. Ann. 204, 73–81 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  17. Chevalley, C. , Théorie des groupes de Lie, Hermann, Paris (1968).

    MATH  Google Scholar 

  18. Freudenthal, H., “Über die Enden topologischer Räume und Gruppen,” Math. Z. 33, 692–713 (1931).

    Article  MathSciNet  Google Scholar 

  19. Gilligan, B., “Ends of complex homogeneous manifolds having non-constant holomorphic functions”(to appear).

    Google Scholar 

  20. Gilligan, B., Huckleberry, A., “On non-compact complex nil-manifolds,” Math. Ann. 238, 39–49 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  21. Gilligan, B., Huckleberry, A., “Complex homogeneous manifolds with two ends,” Mich. J. Math, (to appear).

    Google Scholar 

  22. Goto, M., “On algebraic homogeneous spaces,” Am. J. Math. 76, 811–818 (1954) .

    Article  MathSciNet  MATH  Google Scholar 

  23. Grauert, H., “Analytische Faserungen über holomorph-vollständigen Räumen,” Math. Ann. 135, 263–273 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  24. Grauert, H., “Bemerkenswerte pseudokonvexe Mannigfaltigkeiten,” Math. Z. 81, 377–391 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  25. Grauert, H., Remmert, R., “Über kompakte homogene komplexe Mannigfaltigkeiten,”. Math. 13, 498–507 (1962z).

    MathSciNet  MATH  Google Scholar 

  26. Hano, J., Matsushima, Y., “Some studies on Kählerian homogeneous spaces,” Nagoya Math. J. 11, 77”92 (1957).

    MathSciNet  MATH  Google Scholar 

  27. Harish-Chandra, “Representations of a semi-simple Lie group on a Banach space,” Trans. AMS 70, 28–96 (1953).

    Article  MathSciNet  Google Scholar 

  28. Hochschild, G., Mostow, G.D., “Representations and representative functions of Lie groups,” Ann. of Math. 66, 495–542 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  29. Hochschild, G., Mostow, G.D., “Representations and representative functions of Lie groups, III,” Ann. of Math. 70, 85–100 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  30. Hochschild, G., Mostow, G.D., “Affine embeddings of complex analytic homogeneous spaces,” Am. J. Math. 87, 807–839 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  31. Huckleberry, A., Livorni, L., “A classification of complex homogeneous surfaces,” Can. J. Math, (to appear).

    Google Scholar 

  32. Huckleberry, A., Oeljeklaus, E., “A characterization of complex homogeneous cones,” Math. Z. 170, l8l-194 (1980).

    Article  MathSciNet  Google Scholar 

  33. Huckleberry, A., Oeljeklaus, E., “Sur les espaces analytiques complexes presque homogènes,” C.R. Acad. Sc. Paris, Serie A., 447–448 (1980) .

    Google Scholar 

  34. Huckleberry, A., Snow, D., “Pseudoconcave homogeneous manifolds,” Ann. Scuola Norm. Sup. Pisa, Serie IV, Vol. VII, 29–54 (1980).

    Google Scholar 

  35. Huckleberry, A., Snow, D., “A classification of strictly pseudo-concave homogeneous manifolds,” Ann. Scuola Norm. Sup. Pisa (to appear) .

    Google Scholar 

  36. Huckleberry, A., Snow, D., “Almost-homogeneous Kahler manifolds with hypersurface orbits” (to appear).

    Google Scholar 

  37. Malcev, A.J., “On a class of homogeneous spaces,” AMS Trans. 39 (1951).

    Google Scholar 

  38. Matsumura, H., “On algebraic groups of birational transformation,” Rend. Acad. Naz. Lincei, Ser. VII, 34, 151–155 (1963).

    MathSciNet  MATH  Google Scholar 

  39. Matsushima, Y., “Sur les espaces homogènes kähleriens d’un groupe de Lie reductif,” Nagoya Math. J. 11, 53–60 (1957).

    MathSciNet  MATH  Google Scholar 

  40. Matsushima, Y., “Espaces homogènes de Stein des groupes de Lie complexes I,” Nagoya Math. J. 16, 205–218 (1960).

    MathSciNet  MATH  Google Scholar 

  41. Matsushima, Y., “Sur certains variétés homogènes complexes,” Nagoya Math. J. 18, 1–12 (1960).

    MathSciNet  Google Scholar 

  42. Matsushima, Y., “Espaces homogènes de Stein des groupes de Lie complexes II,” Nagoya Math. J. 18, 153–164 (1961).

    MathSciNet  MATH  Google Scholar 

  43. Matsushima, Y., Morimoto, A., “Sur certains espaces fibres holomorphes sur une variété de Stein,” Bull. Soc. Math. France 88, 137–155 (1960).

    MathSciNet  MATH  Google Scholar 

  44. Montgomery, D., “Simply connected homogeneous spaces,” Proc. Am. Math. Soc. 1, 467–469 (1950).

    Article  MATH  Google Scholar 

  45. Morimoto, A., “Non-compact complex Lie groups without non-constant holomorphic functions,” Proc. of the Conf. on Complex Analysis, Minneapolis 1964, 256–272.

    Google Scholar 

  46. Morimoto, A., “On the classification of non-compact abelian Lie groups,” Trans. AMS 123, 200–228 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  47. Morimoto, Y., Nagano, T., “On pseudo-conformal transformations of hypersurfaces,” J. Math. Soc. Japan 14, 289–300 (1963).

    Article  MathSciNet  Google Scholar 

  48. Mostow, G.D., “On covariant fiberings of Klein spaces,” Am. J. Math. 77, 247–278 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  49. Mostow, G.D., “Some applications of representative functions to solv-manifolds,” Am. J. Math. 93, 11–32 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  50. Mostow, G.D., “Factor spaces of solvable groups,” Ann. of Math. 60, 1–27 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  51. Oeljeklaus, E.,”Über fast homogene kompakte komplexe Mannigfaltigkeiten,” Sohritenr. Math. Inst. Univ. MÜnster, 2. Serie, Bd. 1 (1970).

    Google Scholar 

  52. Oeljeklaus, E., “Ein Hebbarkeitssatz fÜr Automorph ismengruppen kompakter komplexer Mannigfaltigkeiten,” Math. Ann. 190, 154–166 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  53. Oeljeklaus, E., “Fast homogene Kählermannigfaltigkeiten mit verschwindender erster Bettizahl,” Manuskr. Math. 7, 175–183 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  54. Potters, J., “On almost homogeneous compact complex surfaces,” Inv. Math. 8, 244–266 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  55. Remmert, R., van de Ven, T., “Zwei Sätze Über die komplex-projek-tive Ebene,” Nieuw. Arch. Wisk. (3), 8, 147–157 (1960).

    MathSciNet  MATH  Google Scholar 

  56. Remmert, R., van de Ven, T., “Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten,” Topologie 2, 137–157 (1963).

    Article  MATH  Google Scholar 

  57. Richardson, R.W., “Affine coset spaces of reductive algebraic groups,” Bull. London Math. Soc. 9, 38–41 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  58. Rosenlicht, M., “Some basic theorems on algebraic groups,” Am. J. Math. 78, 401–443 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  59. Rossi, H., “Homogeneous strongly pseudoconvex hyperfaces,” Rice Studies 59(3), 131–145 (1973).

    Google Scholar 

  60. Serre, J.-P., “Quelques problèmes globaux relatifs aux variétés de Stein,” Colloque sur les fonctions de plusieurs var. Bruxelles 1953, 57–68.

    Google Scholar 

  61. Skoda, H., “Fibres holomorphes à base et à fibre de Stein,” Inv. Math. 43, 97–107 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  62. Snow, J., “Complex solv-manifolds of dimension two and three,” Thesis, Notre Dame University (1979).

    Google Scholar 

  63. Stein, K., “Analytische Zerlegungen komplexer Räume,” Math. Ann. 132, 63–93 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  64. Tits, J., “Espaces homogènes complexes compacts,” Comm. Math. Helv. 37, 111–120 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  65. Ueno, K., “Classification theory of algebraic varieties and compact complex spaces,” Lecture Notes in Mathematics, 439, Berlin-Heidelberg-New York: Springer 1975.

    MATH  Google Scholar 

  66. van de Ven, T., “Analytic compactif¡cations of complex homology cells,” Math. Ann. 147, 189–204 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  67. Wang, H.C., “Closed manifolds with homogeneous complex structure,” Am. J. Math. 76, 1–32 (1954).

    Article  MATH  Google Scholar 

  68. Wang, H.C., “Complex paral lelisable manifolds,” Proc. Am. Math. Soc. 5, 771–776 (1954).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huckleberry, A.T., Oeljeklaus, E. (1981). Homogeneous Spaces from a Complex Analytic Viewpoint. In: Hano, Ji., Morimoto, A., Murakami, S., Okamoto, K., Ozeki, H. (eds) Manifolds and Lie Groups. Progress in Mathematics, vol 14. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-5987-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5987-9_8

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-5989-3

  • Online ISBN: 978-1-4612-5987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics