Skip to main content

Thyristor thermal response

  • Chapter
Thyristor Physics

Part of the book series: Applied Physics and Engineering ((APPLIED PHYS,volume 12))

  • 274 Accesses

Summary

Heat is generated in a thyristor when it is in either the blocking or the conducting mode. In the first case, the heat generation takes place primarily at the reverse-biased blocking junction. For the case of forward conduction, it is customary to assume (for simplification) that the heat is generated in the thyristor in the plane passing through the device center and parallel to the center junction.

The maximum allowable thyristor dissipation is determined by the maximum permissible junction temperature and the device’s thermal resistance. A generalized thermal impedance concept has been introduced in order to establish maximum dissipation limits during such transient conditions as the turn on, turn off, and current surges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. E. Gentry, F. W. Gutzwiller, N. Holonyak, Jr., and E. E. Von Zastrow. Semiconductor Controlled Rectifiers. Englewood Cliffs, N.J.: Prentice-Hall, 1964.

    Google Scholar 

  2. F. E. Gentry. Forward current surge failure in semiconductor rectifiers. AIEE Trans., 77 (1): 746–750, 1958.

    Google Scholar 

  3. V. I. Stafeev. Injection heat transfer. Soviet Phys.—Solid State, 2: 406–412, 1960.

    Google Scholar 

  4. W. M. Bullis. Minority carrier thermoelectric cooling. J. Appl. Phys., 34(6): 1648–1649,1963.

    Article  ADS  Google Scholar 

  5. R. N. Hall. An analysis of the performance of thermoelectric devices made from long lifetime semiconductors. Solid State Electron., 2: 115–122, 1961.

    Article  ADS  Google Scholar 

  6. RCA Solid State Power Circuits Technical Series, SP-52. RCA Solid State Division, Somerville, N.J., 1971.

    Google Scholar 

  7. General Electric SCR Manual, 5th ed., Syracuse, N.Y.: General Electric, 1972.

    Google Scholar 

  8. J. LePonner and J. M. Peter. Resistance et impedance thermique des triacs. Rev. Gen. d’Electricité, 81 (11): 711–719, 1972.

    Google Scholar 

  9. J. Neilson. RCA Solid State Division, private communication, 1972.

    Google Scholar 

  10. W. E. Newell. Dissipation in solid state devices—The magic of I 1+N PESC Record, 1974, pp. 162–173.

    Google Scholar 

  11. D. Baker and W. O. Fleckenst. In Physical Design of Electronic Systems (D. C. Koehler, C. E. Roden, and R. Sabis, eds.). Bell Telephone Laboratories, Design Technology Vol. 1. Englewood Cliffs, N.J.: Prentice-Hall, 1970.

    Google Scholar 

  12. F. W. Gutzwilier and T. P. Sylvan. Power semiconductor ratings under transient and intermittent loads. Trans. AIEE, 79: 699–706, 1960.

    Google Scholar 

  13. S. Goldman. Transformation Calculus and Electrical Transients. Englewood Cliffs, N.J.: Prentice-Hall, 1949.

    MATH  Google Scholar 

  14. Hua Quen Tserng and Hubert R. Plumlee. The forward voltage technique to measure junction temperatures of ac operating triacs. IEEE Trans Electron Devices, ED-17 (9): 755–761, 1970.

    Article  Google Scholar 

  15. Hua Quen Tserng and Hubert R. Plumlee. Temperature measurements of AC operating triac using a gate trigger current technique. IEEE Trans. Electron Devices, ED-17 (9): 761–765, 1970.

    Article  Google Scholar 

  16. F. T. Wenthen. Computer-aided thermal analysis of power semiconductor devices. IEEE Trans. Electron Devices, ED-17 (9): 765–770, 1970.

    Article  Google Scholar 

  17. G. Liebman. The solution of transient heat flow and heat transfer problems by relaxation. Br. J. Appl. Phys., 6: 129–135, 1955.

    Article  ADS  Google Scholar 

  18. W. H. Parker. Computed transient temperatures for silicon diodes. RCA-Electronic Components, Lancaster, Internal Report, April 1972.

    Google Scholar 

Also of interest

  • W. E. Newell. Transient thermal analysis of solid state power devices— Making a dreaded process easy. PESC Record, 1975, pp. 761–770.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Blicher, A. (1976). Thyristor thermal response. In: Thyristor Physics. Applied Physics and Engineering, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-9877-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-9877-9_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9879-3

  • Online ISBN: 978-1-4612-9877-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics