Skip to main content

The Laplacian of a Graph

  • Chapter
Algebraic Graph Theory

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 207))

Abstract

The Laplacian is another important matrix associated with a graph, and the Laplacian spectrum is the spectrum of this matrix. We will consider the relationship between structural properties of a graph and the Laplacian spectrum, in a similar fashion to the spectral graph theory of previous chapters. We will meet Kirchhoff’s expression for the number of spanning trees of a graph as the determinant of the matrix we get by deleting a row and column from the Laplacian. This is one of the oldest results in algebraic graph theory. We will also see how the Laplacian can be used in a number of ways to provide interesting geometric representations of a graph. This is related to work on the Colin de Verdiere number of a graph, which is one of the most important recent developments in graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. N. Anderson Jr. and T. D. Morley, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra, 18 (1985), 141–145.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23(98) (1973), 298–305.

    MathSciNet  Google Scholar 

  3. —, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak Math. J., 25(100) (1975), 619–633.

    MathSciNet  Google Scholar 

  4. L. Lovász, Combinatorial Problems and Exercises, North-Holland Publishing Co., Amsterdam, second edition, 1993.

    MATH  Google Scholar 

  5. L. Lovász and A. Schrijver, On the null space of a Colin de Verdiere matrix, Ann. Inst. Fourier (Grenoble), 49 (1999), 1017–1026.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Mohar, Isoperimetric numbers of graphs, J. Combin. Theory Ser. B, 47 (1989), 274–291.

    Article  MathSciNet  MATH  Google Scholar 

  7. —, Eigenvalues, diameter, and mean distance in graphs, Graphs Combin., 7 (1991), 53–64.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Pisanskl and J. Shawe-Taylor, Characterising graph drawing with eigenvectors, J. Chem. Inf. Comput. Sci, 40 (2000), 567–571.

    Article  Google Scholar 

  9. W. T. Tutte, How to draw a graph, Proc. London Math. Soc. (3), 13 (1963), 743–767.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. R. van Dam and W. H. Haemers, Graphs with constant μ and \( \bar \mu \), Discrete Math., 182 (1998), 293–307.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. van den Heuvel, Hamilton cycles and eigenvalues of graphs, Linear Algebra Appl., 226/228 (1995), 723–730.

    Article  MathSciNet  Google Scholar 

  12. H. van der Holst, A short proof of the planarity characterization of Colin de Verdiere, J. Combin. Theory Ser. B, 65 (1995), 269–272.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. van der Holst, L. Lovász, and A. Schrijver, The Colin de Verdière graph parameter, in Graph theory and combinatorial biology (Balatonlelle, 1996), Janos Bolyai Math. Soc, Budapest, 1999, 29–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Godsil, C., Royle, G. (2001). The Laplacian of a Graph. In: Algebraic Graph Theory. Graduate Texts in Mathematics, vol 207. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0163-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0163-9_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95220-8

  • Online ISBN: 978-1-4613-0163-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics