Skip to main content
  • 4270 Accesses

Abstract

A triangulation of a given set S of n points in the plane is a maximal set of non-crossing line segments (called edges) which have both endpoints in S. A triangulation partitions the interior of the convex hull of the given point set into triangles. It is used in many areas of engineering and scientific applications such as finite element methods, approximation theory, numerical computation, computer-aided geometric design, and etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Aichholzer,F. Aurenhammer,S. Cheng, N. Katoh, G. Rote, M. Taschwer and Y.F. Xu, Triangulations intersect nicely, Discrete Comput Geom 16:(1996)339–359.

    Article  MATH  MathSciNet  Google Scholar 

  2. O. Aichholzer, F. Aurenhammer, G. Rote, and M. Taschwer, Triangulations intersect nicely, Proc. 11th Ann. ACM Symp.on Computational Geornetry, (1995) pp. 220–229.

    Google Scholar 

  3. O. Aichholzer, F. Aurenhammer, and G. Rote, Optimal graph orientation with storage applications, SFB-Report F003–51 (Optimierung und Kontrolle), TU Graz, Austria, (1995).

    Google Scholar 

  4. O. Aichholzer, F. Aurenhammer, G. Rote, and Y.F. Xu, Constant-level greedy triangulation approximate the MWT well, Journal of Combinatorial Optimization, to appear.

    Google Scholar 

  5. E. Anagnostou and D. Corneil, Polynomial-time instances of the minimum weight triangulation problem, Computational Geometry: theory and Appications 3(1993)247–259.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. Belleville, M. Keil, M. McAllister, and J. Snoeyink, On computing edges that are in all minimum-weight triangulations, Proc. 12th Ann. ACM Symp.on Computational Geometry, (1996) pp. V7 - V8.

    Google Scholar 

  7. M. Bern, H. Edelsbrunner, D. Eppstein, S. Mitchell, and T.S. Tan, Edge insertion for optimal triangulations, Discrete Comput Geom: 10 (1993) pp. 47–65.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Bern and D. Eppstein, Mesh generation and optimal triangulation, in D.-Z. Du, F.K. Hwang(ed.) Computing in Euclidean Geometry, (Lecture Notes Series in Computing 4, World Scientific),(1995) pp.47–123.

    Google Scholar 

  9. B. Bollobas, Graph Theory. An Introductory Course, ( Springer-Verlag, Berlin, 1979 ).

    MATH  Google Scholar 

  10. P. Bose, L. Devroye, and W. Evans, Diamonds are not a minimum weight triangulation’s best friend, Proc.8th Canadian Conf. on Computational Geometry (1996)pp.68–73.

    Google Scholar 

  11. S.W. Cheng, N. Katoh, and M. Sugai, A study of the LMT-skeleton, Proc.Int.Symp.on Algorithms and Computation (ISAAC), (Lecture Notes in Computer Science 1178, Springer Verlag,l996)pp.256–265.

    Google Scholar 

  12. S.W. Cheng, M.J. Golin, and J.C.F. Tsang, Expected-case analysis of β-skeletons with applications to the construction of minimum-weight triangulations, Proc. 7th Canadian Conf. on Computational Geometry, (1995)pp.279–283.

    Google Scholar 

  13. S.W. Cheng and Y.F. Xu, Constrained independence system and triangulations of planar point sets, in: D.Z.Du, M.Li, (eds.), Computing and Combinatorics, (Proc. First Ann. Int. Conf., COCOON’95, Lecture Notes in Computer Science 959, Springer-Verlag, 1995 ) pp. 41–50.

    Google Scholar 

  14. S.W. Cheng and Y.F. Xu, Approaching the largest β-skeleton within a minimum-weight triangulation, Proc. 12th Ann. ACM Symp. on Computational Geometry, (1996) pp. 196–203.

    Google Scholar 

  15. M. Denny and C. Sohler, Encoding a triangulation as a permutation of its point set, (Manuscript, Univ.des Saarlandes, Saarbruecken, Germany, 1997 ).

    Google Scholar 

  16. M. Dickerson, R.L. Drysdale, S. McElfresh, and E. Welzl, Fast greedy triangulation algorithms, Proc. 10th Ann. ACM Symp. Computational Geometry (1994)211–220.

    Google Scholar 

  17. M.T. Dickerson and M.H. Montague, A (usually?) connected subgraph of the minimum weight triangulation, Proc. 12th Ann. ACM Symp. on Computational Geometry, (1996) pp. 204–213.

    Google Scholar 

  18. H. Edelsbrunner, Algorithms in Combinatorial Geometry, EATCS Monographs on Theoretical Computer Science 10, (Springer-Verlag, 1987 ).

    MATH  Google Scholar 

  19. H. Edelsbrunner and T.S. Tan, A quadratic time algorithm for the min-max length triangulation, SIAM J.Comput. 22(1993)pp.527–551.

    Article  MATH  MathSciNet  Google Scholar 

  20. H. Edelsbrunner, T.S. Tan and R. Waupotitsch, A polynomial time algorithm for the minmax angle triangulation, Proc.6th ACM Symp. on Computational Geometry, (1990) pp. 44–52.

    Google Scholar 

  21. D. Eppstein, Approximating the minimum weight steiner triangulation, Discrete Comput Geom 11(1994)pp.163–194.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Eppstein, The farthest point Delaunay triangulation minimizes angles, Comput Geom Theory Appl. 1(1992)pp.143–148.

    MATH  MathSciNet  Google Scholar 

  23. A. Garcia, M. Noy, and J. Tejel, Lower bounds for the number of crossing-free subgraphs of K n , Proc. 7th Canadian Conf. on Computational Geometry, (1995)pp.97–102.

    Google Scholar 

  24. M. Garey and D. Johnson, Computers and Intractability. A Guide to the Theory of NP-completeness, (Freeman, 1979 ).

    MATH  Google Scholar 

  25. P.D. Gilbert, New results in planar triangulation, Report R-850, Coordinated Science Laboratory, (University of Illinois, 1979 ).

    Google Scholar 

  26. S.A. Goldman, A space efficient greedy triangulation algorithm, MIT Technical Report,(RN. MIT/LCS/TM-336, 1988 ).

    Google Scholar 

  27. L.S. Heath and S.V.Pemmaraju, New results for the minimum weight triangulation problem, Algorithmica12 (1994), pp. 533–552.

    Article  MATH  MathSciNet  Google Scholar 

  28. T.C. Hu, Combinatorial Algorithms, (Addison Wesley, 1982 ).

    Google Scholar 

  29. T.C. Hu and A.C. Tucker, Optimal computer search trees and variable-length alphabetical codes, SIAM J. Appl. Math. 21(4), (1971)pp. 514–532.

    Article  MATH  MathSciNet  Google Scholar 

  30. K. Jansen, One strike against the min-max degree triangulation problem, Computational Geometry: Theory and Applications, 3(1993), 107–120.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Keil, Computing a subgraph of the minimum weight triangulation, Computational Geometry: Theory and Applications, 4 (1994), 13–26.

    MATH  MathSciNet  Google Scholar 

  32. D.G. Kirkpatrick and J.D. Radke, A framework for computational morphology, in:G.T.Toussaint(ed.), Computational Geometry, (ElsevierAmsterdam, 1985)217–248.

    Google Scholar 

  33. G.T. Klincsek, Minimal triangulations of polygonal domains, Ann. Discrete Math.9(1980), 127–128.

    Article  MathSciNet  Google Scholar 

  34. C. Levcopoulos, An Ω \(\Omega \left( {\sqrt n } \right)\) lower bound for the nonoptimality of the greedy triangulation, Information Processing Letters 25(1987)pp. 247–251.

    Article  MathSciNet  Google Scholar 

  35. C. Levcopoulos and D. Krznaric, Quasi-greedy triangulations approximating the minimum weight triangulation, Proc. 7th Ann. ACM-SIAM Symp. on Discrete Algorithms, (1996)pp.392–401.

    Google Scholar 

  36. C. Levcopoulos and A. Lingas, Greedy triangulation approximates the minimum weight triangulation and can be computed in linear time in the average case, Report LU-CS-TR: 92–105, ( Dept. of Computer Science, Lund University, 1992 ).

    Google Scholar 

  37. C. Levcopoulos and A. Lingas, On approximation behavior of the greedy triangulation for convex polygons, Algorithmica 2 (1987), 175–193.

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Lingas, A new heuristic for the minimum weight triangulation, SIAM J. Algebraic and Discrete Methods,8(1987)pp.646–658.

    MathSciNet  Google Scholar 

  39. A. Lingas, The greedy and Delaunay triangulations are not bad in the average case and minimum weight triangulation of multi-connected polygons is NP-complete, Foundations of Computation Theory, Lecture Notes in Computer Science, 158(Springer - Verlag, Berlin, 1983 ), pp. 238–250.

    Google Scholar 

  40. E.L. Lloyd, On triangulations of a set of points in the plane, Proceedings of the Eighteenth IEEE Symposium on Foundations of Computer Science(1977), pp.228–240.

    Google Scholar 

  41. H. Meijer and D. Rappaport, Computing the minimum weight triangulation for a set of linearly ordered points, Information Processing Letters, 42(1992)pp.35–38.

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Mirzain, C.A. Wang and Y.F. Xu, On stable line segments in triangulations, Proc. 8th Canadian Conf. Computational Geometry, (1996)pp.68–73.

    Google Scholar 

  43. D.A. Plaisted and J. Hong, A heuristic triangulation algorithm, J. Algorithms, 8(1987)pp.405–437.

    Article  MATH  MathSciNet  Google Scholar 

  44. V.T.Rajan, Optimality of the Delaunay triangulation in R d, Discrete Comput Geom, 12(1994)pp.189–202.

    Article  MATH  MathSciNet  Google Scholar 

  45. M.I. Shamos and D. Hoey, Closest point problems, Proc.l6th IEEE Symp. Foundations of Computer Science,(1975)pp. 151–162.

    Google Scholar 

  46. C.A. Wang, F. Chin, and Y.F. Xu, A new subgraph of minimum weight triangulation, Journal of Combinatorial Optimization, Vol.1, No. 2 (1997) pp. 115–127.

    Article  MATH  MathSciNet  Google Scholar 

  47. Y.F. Xu, Minimum weight triangulation problem of a planar point set, Ph.D. Thesis, (Institute of Applied Mathematics, Academia Sinica, Beijing, 1992 ).

    Google Scholar 

  48. Y.F. Xu, On stable line segments in all triangulations, Appl.Math.-JCU, 11B, No.2(1996)pp. 235–238.

    MATH  Google Scholar 

  49. Y.F. Xu and D. Zhou, Improved heuristics for the minimum weight triangulation, Acta Mathematics of Applicatae SinicaVol. 11, No. 4 (1995) pp. 359–368.

    Article  MATH  MathSciNet  Google Scholar 

  50. B.T. Yang, Y.F. Xu, and Z.Y. You, A chain decomposition algorithm for the proof of a property on minimum weight triangulations, Proc. 5th Int. Symp. on Algorithms and Computation (ISAAC ‘84), (Lecture Notes in Computer Science 834, Springer-Verlag, 1994)pp.423–427.

    Google Scholar 

  51. F. Yao, Speed-up dynamic programming, SIAM J. Alg. Disc. Meth,No.4(1982)pp.532–540.

    Google Scholar 

  52. P. Yoeli, Compilation of data for computer-assisted relief cartography, in J. C. Davis, M. J. McCullagh, (eds.), Display and Analysis of Spatial Data, (Wiley, New York, 1975)pp.352–367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Xu, YF. (1998). Minimum Weight Triangulations. In: Du, DZ., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0303-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0303-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7987-4

  • Online ISBN: 978-1-4613-0303-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics