Skip to main content

The Metzincin-Superfamily of Zinc-Peptidases

  • Chapter
Intracellular Protein Catabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 389))

Abstract

Over the past three years, the three-dimensional structures of a number of zinc proteinases that share the zinc-binding motif HEXXHXXGXXH have been elucidated. These proteinases comprise astacin, a digestive enzyme from crayfish [1,2,3], adamalysin II [4,5] and atrolysin C [6] from snake venom, the Pseudomonas aeruginosa alkaline proteinase [7] and serralysin from Serratia marcescens proteinase [8], the collagenases from human neutrophils [9,10,11]) and fibroblasts [12,13,14,15], human stromelysin 1 [16; K. Appelt, personal communication] and matrilysin [M. Browner, Keystone Symposia, March 5–12, 1994]. These enzymes represent four different families of zinc peptidases: the astacins [3,17], the bacterial serralysins [18], the adamalysins/reprolysins [19,20], and the matrixins (matrix metalloproteinases, MMPs) [21,22].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bode, W., Gomis-Rüth, F.-X., Huber, R., Zwilling, R., and Stöcker, W., 1992, Structure of astacin and implications for the activation of astacins and zinc ligation of collagenases, Nature (London) 358: 164–167.

    Article  CAS  Google Scholar 

  2. Gomis-Rüth, F.-X., Stöcker, W., Huber, R., Zwilling, R., and Bode, W., 1993, The refined 1.8 Å X-ray crystal structure of astacin, a zinc-endopetidase from the crayfish Astacus astacus L. Structure determination, refinement, molecular structure, and comparison to thermolysin, J. Mol. Biol. 229: 945–968.

    Article  PubMed  Google Scholar 

  3. Stöcker, W., Gomis-Rüth, F.-X., Bode, W., and Zwilling, R., 1993, Implications of the three-dimensional structure of astacin for the structure and function of the astacin family of zinc-endopeptidases, Eur. J. Biochem. 214:215–231.

    Article  PubMed  Google Scholar 

  4. Gomis-Rüth, F.-X., Kress, L.F., and Bode, W., 1993, First structure of a snake venom metalloproteinase: a prototype for matrix metalloproteinases/collagenases, EMBO J. 12: 4151–4157.

    PubMed  Google Scholar 

  5. Gomis-Rüth, F.-X., Kress, L.F., Kellermann, J., Mayr, I., Lee, X., Huber, R., and Bode, W., 1994, Refined 2.0 A X-ray crystal structure of the snake venom zinc endopeptidase adamalysin II. Primary and tertiary structure determination, refinement, molecular structure and comparison with astacin, collagenase and thermolysin, J. Mol. Biol. 239: 513–544.

    Article  PubMed  Google Scholar 

  6. Zhang, D., Botos, I., Gomis-Rüth, F.-X., Doll, R., Blood, C., Njoroge, F.G., Fox, J.W., Bode, W., and Meyer, E.F., 1994. Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase atrolysin C (form d), Proc. Natl. Acad. Sci. USA 91: 8447–8451.

    Article  PubMed  CAS  Google Scholar 

  7. Baumann, U., Wu, S., Flaherty, K.M., and McKay, D.B., 1993, Three-dimensional X-ray crystallographic structure of the alkaline protease of Pseudomonas aeruginosa. EMBO J. 12: 3357–3364.

    PubMed  CAS  Google Scholar 

  8. Baumann, U., 1994, Crystal structure of the 50 kDa metallo protease from Serratia marcescens, J. Mol. Biol. 242:244–251.

    Article  PubMed  CAS  Google Scholar 

  9. Bode, W., Reinemer, P., Huber, R., Kleine, T., Schnierer, S., and Tschesche, H., 1994, The crystal structure of human neutrophil collagenase inhibited by a substrate analog reveals the essentials for catalysis and specificity, EMBO J. 13: 1263–1269.

    PubMed  CAS  Google Scholar 

  10. Reinemer, P., Grams, F., Huber, R., Kleine, T., Schnierer, S., Pieper, M., Tschesche, H., and Bode, W., 1994, Structural implications for the role of the N terminus in the ‘superactivation’ of collagenases, FEBS Lett. 338: 227–233.

    Article  PubMed  CAS  Google Scholar 

  11. Stams, T, Spurlino, J.C., Smith, D.L., Wahl, R.C., Ho, T.F., Qorronfleh, M.W., Banks, T.M., and Rubin, B., 1994, Structure of human neutrophil collagenase reveals large S1’ specificity pocket, Nature (London) Struct. Biol. 1: 119–123.

    Article  CAS  Google Scholar 

  12. Borkakoti, N., Winkler, F.K., Williams, D.H., D’Arcy, A., Broadhurst, M.J., Brown, P.A., Johnson, W.H., and Murray, E. J., 1994, Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor, Nature (London) Struct. Biol. 1: 106–110.

    Article  CAS  Google Scholar 

  13. Lovejoy, B., Cleasby, A., Hassell, A.M., Longley, K., Luther, M.A., Weigl, D., McGeehan, G., McElroy, A.B., Drewry, D., Lambert, M.H., and Jordan, S.R., 1994, Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor, Science 263: 375–377.

    Article  PubMed  CAS  Google Scholar 

  14. Lovejoy, B., Hassell, A.M., Luther, M.A., Weigl, D., and Jordan, S.R., 1994, Crystal structure of recombinant 19-kDa human fibroblast collagenase complexed to itself, Biochemistry 33: 8207–8217.

    Article  PubMed  CAS  Google Scholar 

  15. Spurlino, J.C., Smallwood, A.M., Carlton, D.D., Banks, T.M., Vavra, K.J., Johnson, J.S., Cook, E.R., Falvo, J., Wahl, R.C., Pulvino, T.A., Wendolski, J.J., and Smith, D.L., 1994, 1.56 A structure of mature truncated human fibroblast collagenase, Proteins 19: 98–109.

    Article  PubMed  CAS  Google Scholar 

  16. Gooley, RR., O’Connell, J.F., Marcy, A.I., Cuca, G.C., Salowe, S.P., Bush, B.L., Hermes, J.D. Esser, C.K., Hagmann, W.K., Springer, J.P. and Johnson, B.A., 1994, The NMR structure of the inhibited catalytic domain of human stromelysin-1, Nature (London) Struct. Biol. 1: 111–118.

    Article  CAS  Google Scholar 

  17. Dumermuth, E., Sterchi, EE., Jiang, W., Wolz, R.L., Bond, J.S., Flannery, A.V., and Beynon, R.J., 1991, The astacin family of metalloendopeptidases, J. Biol. Chem. 266: 21381–21385.

    PubMed  CAS  Google Scholar 

  18. Häse, CC, and Finkelstein, R.A., 1994, Bacterial extracellular zinc-containing metalloproteases, Microbiological Reviews 57: 823–837.

    Google Scholar 

  19. Wolfsberg, T.G., Bazan, J.F., Blobel, CR, Myles, D.G., Primakoff, P., and White, J.M., 1993, The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: Structural, functional, evolutionary implications, Proc. Natl. Acad. Sci. USA 90: 10783–10787.

    Article  PubMed  CAS  Google Scholar 

  20. Bjarnason, J.B., and Fox, J.W., 1994, Hemorrhagic metalloproteinases from snake venoms, Pharmacol. Ther. 62: 325–372.

    Article  PubMed  CAS  Google Scholar 

  21. Woessner, J.F. jr., 1991, Matrix metalloproteinases and their inhibitors in connective tissue remodeling, FASEB J. 5: 2145–2154.

    PubMed  CAS  Google Scholar 

  22. Birkedal-Hansen, H., Moore, W.G.I., Bodden, M.K., Windsor, L.J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J.A., 1993, Matrix metalloproteinases: a review, Crit. Rev. Oral. Biol. Med. 4: 197–250.

    PubMed  CAS  Google Scholar 

  23. Rawlings, N.D., and Barrett, A. J., 1993, Evolutionary families of peptidases, Biochem. J. 290: 205–218.

    PubMed  CAS  Google Scholar 

  24. Bode, W., Gomis-Rüth, F.-X., and Stöcker, W., 1993, Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the “metzincins”, FEBS Lett. 331: 134–140.

    Article  PubMed  CAS  Google Scholar 

  25. Stöcker, W, Grams, F., Baumann, U., Reinemer, P., Gomis-Rüth, F.-X., McKay, D.B., and Bode, W., 1995, The metzincins - topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases, Protein Science 4:825–840.

    Google Scholar 

  26. Stöcker, W., and Bode, W. (1995) Structural features of a superfamily of zinc-endopeptidases, the metzincins,Current Opinion in Structural Biology, accepted for publication.

    Google Scholar 

  27. Grams, F., Reinemer, P., Powers, J.C., Kleine, T, Pieper, M., Tschesche, H., Huber, R., and Bode, W., 1995, X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors - implications for substrate-binding and rational drug design, Eur. J. Biochem., 228:830–841.

    Article  PubMed  CAS  Google Scholar 

  28. Gomis-Rüth, F.-X., Grams, F., Yiallouros, I., Nar, H., Küsthardt, U., Zwilling, R., Bode, W., and Stöcker, W., 1994, Crystal structures, spectroscopic features and catalytic properties of cobalt(II)-, copper(II)-, nickel(II)- and mercury(II)-derivatives of the zinc-endopeptidase astacin. A correlation of structure and proteolytic activity, J. Biol. Chem. 269: 17111–17117.

    PubMed  Google Scholar 

  29. Matthews, B.W., 1988, Structural basis of the action of thermolysin and related zinc peptidases, Accts. Chem. Res. 21:333–340.

    Article  CAS  Google Scholar 

  30. Grams F, Stöcker W, Dive V, and Bode W, in preparation.

    Google Scholar 

  31. Stöcker, W., and Zwilling, R., 1995, Astacin, Meth. Enzymol. 248: 305–325.

    Article  PubMed  Google Scholar 

  32. Netzel-Arnett, S., Fields, G., Birkedal-Hansen, H., and Van Wart, H., 1993, Sequence specificities of human fibroblast and neutrophil collagenases, J. Biol. Chem. 266: 6747–6755.

    Google Scholar 

  33. Knäuper, V., Osthues, A., DeClerk, Y.A., Langley, K.E., Bläser, J., and Tschesche, H., 1993, Fragmentation of human polymorphonuclear leucocyte collagenase, Biochem. J. 291: 847–854.

    PubMed  Google Scholar 

  34. Sato, H., Takino, T, Okada, Y., Cao, J., Shinagawa, A., Yamamoto. E., and Seiki, M., 1994, A matrix metalloproteinase expressed on the surface of invasive tumour cells, Nature (London) 370: 61–65.

    Article  CAS  Google Scholar 

  35. Springman, E.B., Angleton, E.L., Birkedal-Hansen, H., and Van Wart, H.E., 1990, Multiple modes of activation of latent human fibroblast collagenase: Evidence for the role of a Cys_73 active site zinc complex in latency and a “cysteine switch” mechanism for activation, Proc. Natl. Acad. Sci. USA 87: 364–368.

    Article  PubMed  CAS  Google Scholar 

  36. Nagase, H., Enghild, J.J., Suzuki, K., and Salvesen, G., 1990, Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl) mercuric acetate, Biochemistry 29: 5783–5789.

    Article  PubMed  CAS  Google Scholar 

  37. Corbeil, D., Milhiet, P.-M., Simon, V, Ingram, J., Kenny, A.J., Boileau, G., and Crine, P., 1993, Rat endopeptidase-24.18 Â subunit is secreted into the culture medium as a zymogen when expressed in COS-1 cells, FEBS Lett. 335: 361–366.

    Article  PubMed  CAS  Google Scholar 

  38. Hite, L.A., Shannon, J.D., Bjarnasson, J.B., and Fox, J.W., 1992, Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: evidence for a signal, zymogen, and disintegrin-like structures, Biochemistry 31: 6203–6211.

    Article  PubMed  CAS  Google Scholar 

  39. Grams, F., Huber, R., Kress, L.F., Moroder, L., and Bode, W., 1994, Activation of snake venom metalloproteinases by a cysteine-switch-like mechanism, FEBS Lett. 335: 76–80.

    Article  Google Scholar 

  40. Jongeneel, CV, Bouvier, J., and Bairoch, A., 1989, A unique signature identifies a family of zinc-dependent metallopeptidases, FEBS Lett. 242: 211–214.

    Article  PubMed  CAS  Google Scholar 

  41. Murphy, G.J.P., Murphy, G., and Reynolds, J. J., 1991, The origin of matrix metalloproteinases and their familial relationships, FEBS Lett. 289: 4–7.

    Article  PubMed  CAS  Google Scholar 

  42. Vallee, B.L., and Auld, D.S., 1990, Zinc coordination, function and structure of zinc enzymes and other proteins, Biochemistry 29: 5647–5659.

    Article  PubMed  CAS  Google Scholar 

  43. Jiang, W., and Bond, J.S., 1992, Families of metallopeptidases and their relationships, FEBS Lett. 312: 110–114.

    Article  PubMed  CAS  Google Scholar 

  44. Hooper, N.M., 1994, Families of zinc metalloproteases, FEBS Lett. 354: 1–6.

    Article  PubMed  CAS  Google Scholar 

  45. Okuda, K., Morihara, K., Atsumi, Y, Takeuchi, H., Kawamoto, S., Kawasaki, H., Suzuki, K., and Fukushima, J., 1990, Complete nucleotide sequence of the structural gene for alkaline proteinase from Pseudomonas aeruginosa, Infect. Immun. 58: 4083–4088.

    PubMed  CAS  Google Scholar 

  46. Hasty, K.A., Pourmotabbed, T.F., Goldberg, G.I., Thompson, J.P., Spinella, D.G., Stephens, R.M., and Mainardi, C.L., 1990, Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases, J. Biol. Chem. 265: 11421–11424.

    PubMed  CAS  Google Scholar 

  47. Titani, K., Torff, H.-J., Hormei, S., Kumar, S., Walsh, K.A., Rödl, J., Neurath, H., and Zwilling, R., 1987, Amino acid sequence of a unique protease from the crayfish Astacus fluviatilis, Biochemistry 26: 222–226.

    Article  PubMed  CAS  Google Scholar 

  48. Rossman, M.G., and Argos, R, 1975, A comparison of the heme binding pocket in globulins and cytochrome b5, J. Biol. Chem. 250: 7525–7532.

    Google Scholar 

  49. Kraulis, P.J., 1991, MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures, J. Appl. Cryst. 24: 946–950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Bode, W. et al. (1996). The Metzincin-Superfamily of Zinc-Peptidases. In: Suzuki, K., Bond, J.S. (eds) Intracellular Protein Catabolism. Advances in Experimental Medicine and Biology, vol 389. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0335-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0335-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8003-0

  • Online ISBN: 978-1-4613-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics