Skip to main content

Activation of ATP-Sensitive Potassium Channels: A Novel Pharmacological Approach to Myocardial Protection?

  • Chapter
Myocardial Protection and the KATP Channel

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 179))

  • 33 Accesses

Abstract

A number of compounds of widely differing chemical structure have been developed in an attempt to alter the open probability of what has become known as the adenosine triphosphate-sensitive potassium channel (KATP channel). They include channel openers (such as pinacidil, aprikalim, nicorandil, bimakalim, cromakalim and its active enantiomer levcromakalim) and channel blockers such as glibenclamide, tolbutamide and 5-hydroxydecanoate. They all are able to override the actions of an array of biochemical regulators of channel activity including ATP (an inhibitor of channel opening), adenosine diphosphate, adenosine, fatty acids, lactate, pyruvate and pH (for detailed reviews on the nature of the KATP channel and its biological and pharmacological control see (1–6)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quast U: Do the K+ channel openers relax smooth muscle by opening K+ channels? TIPS 1993;14:332–337.

    PubMed  CAS  Google Scholar 

  2. Cook NS: The pharmacology of potassium channels and their therapeutic potential. TIPS 1988;9:21–28.

    PubMed  CAS  Google Scholar 

  3. Longman SD, Hamilton TC: Potassium channel activator drugs: mechanism of action, pharmacological proterties, and therapeutic potential. Med Res Rev 1992;12:73–148.

    Article  PubMed  CAS  Google Scholar 

  4. Findlay I, Faivre J-F: ATP-sensitive K channels in heart muscle. Spare channels.FEBS 1991;279:95–97.

    CAS  Google Scholar 

  5. Weston AH, Edwards G: Recent progress in potassium channel opener pharmacology. Biochem Pharmacol 1992;43:47–54.

    Article  PubMed  CAS  Google Scholar 

  6. Nichols CG, Lederer WJ: Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol 1991;261:H1675-H1686.

    PubMed  CAS  Google Scholar 

  7. Coetzee W A: ATP-sensitive potassium channels and myocardial ischemia: why do they open? Cardiovasc Drugs Ther 1992;6:201–208.

    Article  PubMed  CAS  Google Scholar 

  8. Richer C, Pratz J, Mulder P, et al: Cardiovascular and biological effects of K+ channel openers, vasorelaxant and cardioprotective properties. Life Sci 1990;47:1693–1705.

    Article  PubMed  CAS  Google Scholar 

  9. Cook NS, Quast U: Potassium channel pharmacology, in Cook NS (ed): Potassium channels, structures, classification, function and therapeutic potential. Chichester, Ellis Horwood, 1990, pp 181–255.

    Google Scholar 

  10. Ashcroft SJH, Ashcroft FM: Properties and functions of ATP-sensitive K+ channels. Cell Sig 1990;2:197–214.

    Article  CAS  Google Scholar 

  11. Edwards G, Weston AH: The pharmacology of ATP-sensitive potassium channels. Ann Rev Pharmacol Toxicol 1993;33:597–637.

    Article  CAS  Google Scholar 

  12. De Weille JR: Modulation of ATP sensitive potassium channels. Cardiovasc Res 1992;26:1017–1020.

    Article  PubMed  Google Scholar 

  13. Sakai K: Nicorandil: animal pharmacology. Am J Cardiol 1989;63:2J-10J.

    Article  PubMed  CAS  Google Scholar 

  14. Cavero I, Djellas Y, Guillon J-M: Ischemic myocardial cell protection conferred by the opening of ATP-sensitive potassium channels. Cardiovasc Drugs Ther 1995;9:245–255.

    Article  PubMed  Google Scholar 

  15. Lazdunski M: Potassium channels: structure-function relationships, diversity, and pharmacology. Cardiovasc Drugs Ther 1992;6:313–319.

    Article  Google Scholar 

  16. Lazdunski M: ATP-sensitive potassium channels: an overview. J Cardiovasc Pharmacol 1994;24 (Suppl.4):Sl-S5.

    Article  Google Scholar 

  17. Grover G J: Protective effects of ATP sensitive potassium channel openers in models of myocardial ischaemia. Cardiovasc Res 1994;28:778–782.

    Article  PubMed  CAS  Google Scholar 

  18. Cavero I, Premmereur J: ATP sensitive potassium channel openers are of potential benefit in ischaemic heart disease. Cardiovasc Res 1994;28:32–33.

    Article  PubMed  CAS  Google Scholar 

  19. Opie LH: Modulation of ischemia by regulation of the ATP-sensitive potassium channel. Cardiovasc Drugs Ther 1993;7:507–513.

    Article  PubMed  Google Scholar 

  20. Cole WC: ATP-sensitive K+ channels in cardiac ischemia: an endogenous mechanism for protection of the heart. Cardiovasc Drugs Ther 1993;7 (Suppl.3):527–537.

    Article  PubMed  Google Scholar 

  21. Gross GJ, Auchampach JA: Role of ATP dependent potassium channels in myocardial ischaemia. Cardiovasc Res 1992;26:1011–1016.

    Article  PubMed  CAS  Google Scholar 

  22. Siegl P: Blockers of ATP sensitive potassium current are of potential benefit in ischaemic heart disease. Cardiovasc Res 1994;28:31–33.

    Article  PubMed  CAS  Google Scholar 

  23. Hearse DJ, Yellon DM: Why are we still in doubt about infarct size limitation? The experimentalist’s viewpoint, in Hearse DJ, Yellon DM (eds): Therapeutic approaches to infarct size limitation. New York, Raven Press, 1984, pp 17–41.

    Google Scholar 

  24. Hearse DJ: The protection of the ischemic myocardium: surgical success versus clinical failure. Prog Cardiovasc Dis 1988;6:381–402.

    Article  Google Scholar 

  25. Hearse DJ, Bolli R: Reperfusion-induced injury: manifestation, mechanisms and clinical relevance. Trends Cardiovasc Med 1991;1:233–240.

    Article  PubMed  CAS  Google Scholar 

  26. Grover GJ, Sleph PG, Parham CS: Nicorandil improves postischemic contractile function independently of direct myocardial effects. J Cardiovasc Pharmacol 1990;15:698–705.

    Article  PubMed  CAS  Google Scholar 

  27. D’Alonzo AJ, Darbenzio RB, Parham CS, et al: Effects of intracoronary cromakalim on postischaemic contractile function and action potential duration. Cardiovasc Res 1992;26:1046–1053.

    Article  PubMed  Google Scholar 

  28. Gross GJ, Warltier DC, Hardman HF: Comparative effects of nicorandil, a nicotinamide nitrate derivative, and nifedipine on myocardial reperfusion injury in dogs. J Cardiovasc Pharmacol 1987;10:535–542.

    Article  PubMed  CAS  Google Scholar 

  29. Gross GJ, Pieper GM, Warltier DC: Comparative effects of nicorandil, nitroglycerin, nicotinic acid, and SG-86 on the metabolic status and functional recovery of the ischemic-reperfused myocardium. J Cardiovasc Pharmacol 1987;10 (Suppl.8):S76-S84.

    PubMed  CAS  Google Scholar 

  30. Gross G, Pieper G, Farber NE, et al: Effects of nicorandil on coronary circulation and myocardial ischemia. Am J Cardiol 1989;63:11J-17J.

    Article  PubMed  CAS  Google Scholar 

  31. Gross GJ, Auchampach JA, Maruyama M, et al: Cardioprotective effects of nicorandil. J Cardiovasc Pharmacol 1992;20 (Suppl.3):S22-S28.

    Article  PubMed  CAS  Google Scholar 

  32. Auchampach JA, Cavero I, Gross GJ: Nicorandil attenuates myocardial dysfunction associated with transient ischemia by opening ATP-dependent potassium channels. J Cardiovasc Pharmacol 1992;20:765–771.

    PubMed  CAS  Google Scholar 

  33. Auchampach JA, Maruyama M, Cavero I, et al: Pharmacological evidence for a role of ATP-dependent potassium channels in myocardial stunning. Circulation 1992;86:311–319.

    PubMed  CAS  Google Scholar 

  34. Udvary E, Szilvassy Z, Papp JG: Glibenclamide reverses cromakalim-induced anti-ischemic effect in conscious rabbits. Pharmacol Res 1992;25 (Suppl.2): 179–180.

    Article  Google Scholar 

  35. Cole WC, McPherson CD, Sontag D: ATP-regulated K+ channels protect the myocardium against ischemia/reperfusion damage. Circ Res 1991;69:571–581.

    PubMed  CAS  Google Scholar 

  36. Grover GJ, Sleph PG, Dzwonczyk S: Pharmacologic profile of cromakalim in the treatment of myocardial ischemia in isolated rat hearts and anesthetized dogs. J Cardiovasc Pharmacol 1990;16:853–864.

    Article  PubMed  CAS  Google Scholar 

  37. McCullough JR, Normandin DE, Conder ML, et al: Specific block of the anti-ischemic actions of cromakalim by sodium 5-hydroxydecanoate. Circ Res 1991;69:949–958.

    PubMed  CAS  Google Scholar 

  38. Sargent CA, Smith MA, Dzwonczyk S, et al: Effect of potasium channel blockade on the anti-ischemic actions of mechanistically diverse agents. J Pharmacol Exp Ther 1991;259:97–103.

    PubMed  CAS  Google Scholar 

  39. Grover GJ, Dzwonczyk S, Sleph PG: Reduction of ischemic damage in isolated rat hearts by the potassium channel opener, RP 52891. Eur J Pharmacol 1990;191:11–18.

    Article  PubMed  CAS  Google Scholar 

  40. Grover GJ, Dzwonczyk S, Parham CS, et al: The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs. Cardiovasc Drugs Ther 1990;4:465–474.

    Article  PubMed  CAS  Google Scholar 

  41. Grover GJ, Newburger J, Sleph PG, et al: Cardioprotective effects of the potassium channel opener cromakalim: stereoselectivity and effects on myocardial adenine nucleotides. J Pharmacol Exp Ther 1991;257:156–162.

    PubMed  CAS  Google Scholar 

  42. Grover GJ, McCullough JR, Henry EE, et al: Anti-ischemic effects of the potasium channel activators pinacidil and cromakalim and the reversal of these effects with the potassium channel blocker glyburide. J Pharmacol Exp Ther 1989;251:98–104.

    PubMed  CAS  Google Scholar 

  43. Grover GJ, McCullough JR, D’Alonzo AJ, et al: Cardioprotective profile of the cardiac-selective ATP-sensitive potassium channel opener BMS-180448. J Cardiovasc Pharmacol 1995;25:40–50.

    Article  PubMed  CAS  Google Scholar 

  44. Findlay I: Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle. J Pharmacol Exp Ther 1993;266:456–467.

    PubMed  CAS  Google Scholar 

  45. Galiñanes M, Shattock MJ, Hearse DJ: Effects of potassium channel modulation during global ischaemia in isolated rat heart with and without cardioplegia. Cardiovasc Res 1992;26:1063–1068.

    Article  PubMed  Google Scholar 

  46. Irie H: Experimental studies on ischemic injury and reperfusion injury to the cardiac sarcoplasmic reticulum. The myocardial protective effect of nicorandil. Jap Cire J 1988;52:563–569.

    Article  CAS  Google Scholar 

  47. Sugimoto S, Puddu PE, Monti F, et al: Pretreatment with the adenosine triphosphate-sensitive potasium channel opener nicorandil and improved myocardial protection during high-potassium cardioplegic hypoxia. J Thorac Cardiovasc Surg 1994;108:455–466.

    PubMed  CAS  Google Scholar 

  48. Cohen NM, Wise RM, Wechsler AS, et al: Elective cardiac arrest with hyperpolarizing adenosine triphosphate-sensitive potassium channel opener. A novel form of myocardial protection? J Thorac Cardiovasc Surg 1993;106:317–328.

    PubMed  CAS  Google Scholar 

  49. Grover GJ: Protective effects of ATP-sensitive potassium-channel openers in experimental myocardial ischemia. J Cardiovasc Pharmacol 1994;24 (Suppl.4):S18-S27.

    Article  PubMed  CAS  Google Scholar 

  50. Ohta H, Jinno Y, Harada K, et al: Cardioprotective effects of KRN2391 and nicorandil on ischemic dysfunction in perfused rat heart. Eur J Pharmacol 1991;204:171–177.

    Article  PubMed  CAS  Google Scholar 

  51. Mitani A, Konoshita K, Fukamachi K, et al: Effects of glibenclamide and nicorandil on cardiac function during ischemia and reperfusion in isolated perfused rat hearts. Am J Physiol 1991;261:H1864-H1871.

    PubMed  CAS  Google Scholar 

  52. Haneda T, Ichihara K, Onodera S: Effects of nicorandil and nipradilol on ischemic myocardium in perfused rat heart. Eur J Pharmacol 1989;162:81–87.

    Article  PubMed  CAS  Google Scholar 

  53. Pieper GM, Gross GJ: Protective effect of nicorandil on postischemic function and tissue adenine nucleotides following a brief period of low-flow global ischemia in the isolated perfused rat heart. Pharmacology 1989;38:205–213.

    Article  PubMed  CAS  Google Scholar 

  54. Qiu Y, Galiñanes M, Hearse DJ: Protective effect of nicorandil as an additive to continuous warm cardioplegia. J Thorac Cardiovasc Surg 1995;(in press)

    Google Scholar 

  55. Rees SA, Curtis MJ: A pharmacological analysis in rat of the role of the ATP-sensitive potassium channel as target for antifibrillatory intervention in acute myocardial ischemia. J Cardiovasc Pharmacol 1995;(in press)

    Google Scholar 

  56. Gross GJ, Auchampach JA: Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992;70:223–233.

    PubMed  CAS  Google Scholar 

  57. Lamping KA, Christensen CW, Pelc LR, et al: Effects of nicorandil and nifedipine on protection of ischemic myocardium. J Cardiovasc Pharmacol 1984;6:536–542.

    Article  PubMed  CAS  Google Scholar 

  58. Mizumura T, Nithipatikom K, Gross GJ: Effects of nicorandil and glyceryl trinitrate on infarct size, adenosine release, and neutrophil infiltration in the dog. Cardiovasc Res 1995;29:482–489.

    PubMed  CAS  Google Scholar 

  59. Auchampach JA, Maruyama M, Cavero I, et al: The new K+ channel opener aprikalim (RP 52891) reduces experimental infarct size in dogs in the absence of hemodynamic changes. J Pharmacol Exp Ther 1991;259:961–967.

    PubMed  CAS  Google Scholar 

  60. Auchampach JA, Gross GJ: Reduction in myocardial infarct size by the new potassium channel opener bimakalim. J Cardiovasc Pharmacol 1994;23:554–561.

    Article  PubMed  CAS  Google Scholar 

  61. Rohmann S, Weygandt H, Schelling P, et al: Effects of bimakalim (EMD 52692), on opener of ATP sensitive potassium channels, on infarct size, coronary blood flow, regional wall function, and oxygen consumption in swine. Cardiovasc Res 1994;28:858–863.

    Article  PubMed  CAS  Google Scholar 

  62. Toombs CF, Norman NR, Groppi VE, et al: Limitation of myocardial injury with the potassium channel opener cromakalim and the nonvasoactive analog U-89,232: vascular vs. cardiac actions in vitro and in vivo. J Pharmacol Exp Ther 1992;263:1261–1268.

    PubMed  CAS  Google Scholar 

  63. Yao Z, Gross GJ: Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 1994;89:1769–1775.

    PubMed  CAS  Google Scholar 

  64. Endo T, Nejima J, Kiuchi K, et al: Reduction of size of myocardial infarction with nicorandil, a new antianginal drug, after coronary artery occlusion in dogs. J Cardiovasc Pharmacol 1988;12:587–592.

    Article  PubMed  CAS  Google Scholar 

  65. Mizumura T, Kithipatikom K, Gross GJ: Bimakalim, an ATP-sensitive potassium channel opener, mimics the effects of ischemic preconditioning to reduce infarct size, adenosine release and neutrophil function in dogs. Circulation 1995;(in press)

    Google Scholar 

  66. Kitzen JM, McCallum JD, Harvey C, et al: Potassium channel activators cromakalim and celikalim (WAY-120,491) fail to decrease myocardial infarct size in the anesthetized canine. Pharmacology 1992;45:71–82.

    Article  PubMed  CAS  Google Scholar 

  67. Sakamoto S, Liang C, Stone CK, et al: Effects of pinacidil on myocardial blood flow and infarct size after acute left anterior descending coronary artery occlusion and reperfusion in awake dogs with and without a coexisting left circumflex coronary artery stenosis. J Cardiovasc Pharmacol 1989;14:747–755.

    Article  PubMed  CAS  Google Scholar 

  68. Iami N, Liang C-S, Stone CK, et al: Comparative effects of nitroprusside and pinacidil on myocardial blood flow and infarct size in awake dogs with acute myocardial infarction. Circulation 1988;77:705–711.

    Article  Google Scholar 

  69. Smallwood JK, Schelm JA, Bemis KG, et al: Effect of activation of ATP-dependent potassium channels with (-)-Pinacidil and (-)-3–3pyridyl pinacidil on infarct size in a canine model of ischemia-reperfusion injury. J Cardiovasc Pharmacol 1993;22:731–743.

    Article  PubMed  CAS  Google Scholar 

  70. Escande D, Cavero I: K+ channel openers and ‘natural’ cardioprotection. TIPS 1992;13:269–272.

    PubMed  CAS  Google Scholar 

  71. Yao Z, Gross GJ: Protective effects of ATP-sensitive potassium channel: an endogenous cardioprotective mechanism. J Cardiovasc Pharmacol 1994;24 (Suppl.4):28–34.

    Article  Google Scholar 

  72. Wilde AAM, Janse MJ: Electrophysiological effects of ATP sensitive potassium channel modulation: implications for arrhythmogenesis. Cardiovasc Res 1994;28:16–24.

    Article  PubMed  CAS  Google Scholar 

  73. Yan G-X, Yamada KA, Kleber AG, et al: Dissociation between cellular K+ loss, reduction in repolarization time, and tissue ATP levels during myocardial hypoxia and ischemia. Circulation Research 1993;72:560–570.

    PubMed  CAS  Google Scholar 

  74. McPherson CD, Pierce GN, Cole WC: Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation. Am J Physiol 1993;265:H1809-H1818.

    PubMed  CAS  Google Scholar 

  75. Bolotina VM, Najibi S, Palacino JJ, et al: Nitric oxide directly activates calcium-denpendent potassium channels in vascular smooth muscle. Nature 1994;368:850–853.

    Article  PubMed  CAS  Google Scholar 

  76. Inoue I, Nagase H, Kishi K, et al: ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 1991;352:244–247.

    Article  PubMed  CAS  Google Scholar 

  77. Pieper GM, Gross GJ: Anti-free-radical and neutrophil-modulating properties of the nitrovasodilator, nicorandil. Cardiovasc Drugs Ther 1992;6:225–232.

    Article  PubMed  CAS  Google Scholar 

  78. Pieper GM, Gross GJ: Salutary action of nicorandil, a new antianginal drug, on myocardial metabolism during ischemia and on postischemic function in a canine preparation of brief, repetitive coronary artery occlusions: comparison with isosorbide dinitrate. Circulation 1987;76:916–928.

    Article  PubMed  CAS  Google Scholar 

  79. Gross GJ, Yao Z, Auchampach JA: Role of ATP-sensitive potassium channels in ischemic preconditioning, in Przyklenk K, Kloner RA, Yellon DM (eds): Ischemic preconditioning: the concept of endogenous cardioprotection. Kluwer Academic Publishers, 1994, pp 125–135.

    Chapter  Google Scholar 

  80. Parratt JR, Kane KA: KATP channels in ischaemic preconditioning. Cardiovasc Res 1994;28:783–787.

    Article  PubMed  CAS  Google Scholar 

  81. Wilde AAM: KATP-channel opening and arrhythmogenesis. J Cardiovasc Pharmacol 1994;24 (Suppl.4):S35-S40.

    Article  PubMed  CAS  Google Scholar 

  82. Colatsky TJ, Follmer CH: K+ channel blockers and activators in cardiac arrhythmias. Cardiovasc Drug Rev 1989;7:199–109.

    Article  Google Scholar 

  83. Billman GE: Role of ATP sensitive potassium channel in extracellular potassium accumulation and cardiac arrhythmias during myocardial ischaemia. Cardiovasc Res 1994;28:762–769.

    Article  PubMed  CAS  Google Scholar 

  84. Coronel R: Heterogeneity in extracellular potassium concentration during early myocardial ischaemia and reperfusion: implications for arrhythmogenesis. Cardiovasc Res 1994;28:770–777.

    Article  PubMed  CAS  Google Scholar 

  85. D’Alonzo AJ, Dabenzio RB, Hess TA, et al: Effect of potassium on the action of the KATP modulators cromakalim, pinacidil, or glibenclamide on arrhythmias in isolated perfused rat heart subjected to regional ischaemia. Cardiovasc Res 1994;28:881–887.

    Article  PubMed  Google Scholar 

  86. Baghdady R, Nichols C: Letter to the Editor. Cardiovasc Res 1994;28:135–136.

    Article  PubMed  CAS  Google Scholar 

  87. Chi L, Black SC, Friedrichs GS, et al: Letter to the Editor. Cardiovasc Res 1994;28:136–137.

    Article  PubMed  CAS  Google Scholar 

  88. Wollenben CD, Sanguinetti MC, Siegl PKS: Influence of ATP-sensitive potassium channel modulators on ischemia-induced fibrillation in isolated rat hearts. J Mol Cell Cardiol 1989;21:783–788.

    Article  Google Scholar 

  89. Chi L, Uprichard AC, Lucchesi BR: Profibrillatory actions of pinacidil in a conscious canine model of sudden coronary death. J Cardiovasc Pharmacol 1990;15:452–464.

    Article  PubMed  CAS  Google Scholar 

  90. Di Diego JM, Antzelevitch C: Pinacidil-induced electrical heterogeneity and extrasystolic activity in canine ventricular tissues. Does activation of ATP-regulated protassium current promote phase 2 reentry? Circulation 1993;88:1177–1189.

    PubMed  Google Scholar 

  91. Black SC, Lucchesi BR: Potassium channels are likely to be proarrhythmic in the diseased human heart. Cardiovasc Res 1994;28:923–924.

    Article  PubMed  CAS  Google Scholar 

  92. D’Alonzo AJ, Grover GJ: Potassium channel openers are unlikely to be proarrhythmic in the diseased human heart. Cardiovasc Res 1994;28:924–925.

    Article  PubMed  Google Scholar 

  93. Billman G: Letter to the Editor. Cardiovasc Res 1994;28:137–138.

    Article  PubMed  CAS  Google Scholar 

  94. Gross G: Letter to the Editor. Cardiovasc Res 1994;28:139–140.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hearse, D.J. (1995). Activation of ATP-Sensitive Potassium Channels: A Novel Pharmacological Approach to Myocardial Protection?. In: Yellon, D.M., Gross, G.J. (eds) Myocardial Protection and the KATP Channel. Developments in Cardiovascular Medicine, vol 179. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0453-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0453-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8055-9

  • Online ISBN: 978-1-4613-0453-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics