Skip to main content

Ecophysiological Constraints on the Distribution of Piper Species

  • Chapter
Tropical Forest Plant Ecophysiology

Abstract

In the shade, light strongly limits to plant growth and successful species typically possess features that increase both the capture and conservation of light energy. In the sun, light is often non- or co-limiting for growth and successful species often possess traits that enable the dissipation of light energy and the partitioning of resources to enhance the capture of other limiting resources. At least in concept, it is unclear why phenotypic plasticity cannot allow all plants to acclimate to any resource level(s). At a fundamental level, the answer must be that phenotypic plasticity has limits. Such limits could affect individual traits. Alternatively, the real limitation to phenotypic plasticity may reside in the difficulty of successfully orchestrating the large number of phenological, morphological, and physiological changes necessary for success in environments representing extremes in resource availability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bazzaz, F. A. & Carlson, R. W. (1982) Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia, 54, 313–316.

    Article  Google Scholar 

  • Björkman, O. (1981) Responses to different quantum flux densities. Physiological Plant Ecology. Volume 1. Responses to the Physiological Environment. Springer-Verlag, New York.

    Google Scholar 

  • Björkman, O. & Holmgren, P. (1963) Adaptability of the photosynthetic apparatus to light intensity in ecotypes from exposed and shaded habitats. Physiologia Plantarum, 16, 889–914.

    Article  Google Scholar 

  • Bloom, A. J., Caldwell, R. M., Finazzo, J., Warner, R. L. & Weissbart, J. (1989) Oxygen and carbon dioxide fluxes from barley shoots depend on nitrate assimilation. Plant Physiology, 91, 352–356.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, A. J., Chapin, F. S., III & Mooney, H. A. (1985) Resource limitation in plants — An economic analogy. Annual Review of Ecology and Systematics, 16, 363–392.

    Google Scholar 

  • Burger, W. C. (1972) Evolutionary trends in the Central American species of Piper (Piperaceae). Brittonia, 24, 356–362.

    Article  Google Scholar 

  • Campbell, W. H. (1988) Nitrate reductase and its role in nitrate assimilation in plants. Physiologia Plantarum, 74, 214–219.

    Article  CAS  Google Scholar 

  • Campbell, W. H. & Redinbaugh, M. G. (1984) Ferric-citrate reductase activity of nitrate reductase and its role in iron assimilation by plants. Journal of Plant Nutrition, 7, 799–806.

    Article  CAS  Google Scholar 

  • Chapin, F. S., III (1980) The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233–260.

    Article  CAS  Google Scholar 

  • Chapin, F. S., III (1991) Integrated responses of plants to stress. Bioscience, 41, 29–36.

    Article  Google Scholar 

  • Chapin, F. S., III, Bloom, A. J., Field, C. B. & Waring, R. H. (1987) Interactions of environmental factors in controlling plant growth. Bioscience, 37, 49–57.

    Article  Google Scholar 

  • Chazdon, R. L. (1992) Photosynthetic plasticity of two rainforest shrubs across natural gap transects. Oecologia, 92, 586–595.

    Article  Google Scholar 

  • Chazdon, R. L. & Field, C. B. (1987) Photographic estimation of photosyn-thetically active radiation: Evaluation of a computerized technique. Oecologia, 73, 586–595.

    Google Scholar 

  • Chazdon, R. L. & Kaufmann, S. (1993) Plasticity of leaf anatomy in relation to photosynthetic light acclimation. Functional Ecology, 7, 385–394.

    Article  Google Scholar 

  • Chazdon, R. L., Williams, K. & Field, C. B. (1988) Interactions between crown structure and light environment in five rainforest Piper species. American Journal of Botany, 75, 1459–1471.

    Article  Google Scholar 

  • Chiariello, N. R., Field, C. B. & Mooney, H. A. (1987) Midday wilting in a tropical pioneer tree. Functional Ecology, 1, 3–11.

    Article  Google Scholar 

  • Clark, D. B. & Clark, D. A. (1987) An experimental method for community-level assessment of components of seedling mortality, with data from a tropical rainforest. Bulletin of the Ecological Society of America, 68, 280.

    Google Scholar 

  • Cook, R. E. (1979) Patterns of juvenile mortality and recruitment in plants. Topics in Plant Population Biology (eds. O. T. Solbrig, S. Jain, G. B. Johnson, & P. H. Raven) Columbia University Press, New York.

    Google Scholar 

  • Corré, W. J. (1983) Growth and morphogenesis of sun and shade plants. II. The influence of light quality. Acta Botanica Neerlandica, 32, 185–202.

    Google Scholar 

  • Cross, J. R. (1975) Biological flora of the British Isles: Rhododendron ponticum. Journal of Ecology, 63, 345–359.

    Article  Google Scholar 

  • Delieu, T. & Walker, D. A. (1981) Polarographic measurement of photosyn-thetic O2 evolution by leaf discs. New Phytologist, 89, 165–175.

    Article  CAS  Google Scholar 

  • Denslow, J. S., Schultz, J. C., Vitousek, P. M. & Strain, B. R. (1990) Growth responses of tropical shrubs to treefall gap environments. Ecology, 71, 165–170.

    Article  Google Scholar 

  • Denslow, J. S., Vitousek, P. M. & Schultz, J. C. (1987) Bioassays of nutrient limitation in a tropical rainforest soil. Oecologia, 74, 370–376.

    Article  Google Scholar 

  • Doddema, H., Hofstra, J. J. & Feenstra, W. J. (1978) Uptake of nitrate by mutants of Arabidopsis thaliana, disturbed in uptake or reduction of nitrate. I. Effect of nitrogen source during growth on uptake of nitrate and chlorate. Physiologia Plantarum, 43, 343–350.

    Article  CAS  Google Scholar 

  • Field, C. B. (1988) On the role of photosynthetic responses in constraining the habitat distribution of rainforest plants. Ecology of Photosynthesis in Sun and Shade (eds. J. R. Evans, S. von Caemmerer, & W. W. Adams III) CSIRO, Australia.

    Google Scholar 

  • Fitter, A. H. & Hay, R. K. M. (1987) Environmental Physiology of Plants. Academic Press, London.

    Google Scholar 

  • Fleming, T. H. (1985) Coexistence of five sympatric Piper (Piperaceae) species in a dry tropical forest. Ecology, 66, 688–700.

    Article  Google Scholar 

  • Fleming, T. H. & Heithaus, E.R. (1981). Frugivorous bats, seed shadows, and the structure of tropical forest. Biotropica Reproductive Botany, 45, 33.

    Google Scholar 

  • Fredeen, A. L. & Field, C. B. (1991) Leaf respiration in Piper species native to a Mexican rainforest. Physiologia Plantarum, 82, 85–92.

    Article  Google Scholar 

  • Fredeen, A. L. & Field, C. B. (1992) Ammonium and nitrate uptake in gap, generalist, and understory species of the genus Piper. Oecologia, 92, 207–214.

    Article  Google Scholar 

  • Fredeen, A. L., Griffin, K. & Field, C. B. (1991) Effects of light quantity and quality and soil nitrogen status on nitrate reductase activity in rainforest species of the genus Piper. Oecologia, 86, 441–446.

    Article  Google Scholar 

  • Fredeen, A. L., Griffin, K., Hennessey, T. L. & Field, C. B. (1995) Intrinsic growth rates and photosynthetic properties of gap, generalist, and understory Piper species (submitted)

    Google Scholar 

  • Gartner, B. (1989) Breakage and regrowth of Piper species in rainforest understory. Biotropica, 21, 303–307.

    Article  Google Scholar 

  • Gauhl, E. (1969) Differential photosynthetic performance of Solanum dulcamara ecotypes from shaded and exposed habitats. Carnegie Insitution of Washington Yearbook, 67, 482–487.

    Google Scholar 

  • Gauhl, E. (1976) Photosynthetic response to varying light intensity in ecotypes of Solanum dulcamara L. from shaded and exposed habitats. Oecologia, 22, 274–286.

    Article  Google Scholar 

  • Gómez-Pompa, A. (1971) Posible papel de la vegetaciön secundaria en la evolution de la flora tropical. Biotropica, 3, 125–135.

    Article  Google Scholar 

  • Gómez-Pompa, A. & Vázquez-Yanes, C. (1974) Studies on the secondary succession of tropical lowlands: The life cycle of secondary species. First International Congress of Ecology.

    Google Scholar 

  • Greig, N. (1993a) Predispersal seed predation of five Piper species in tropical rainforest. Oecologia, 92, 412–420.

    Article  Google Scholar 

  • Greig, N. (1993b) Regeneration mode in neotropical Piper: Habitat and species comparisons. Ecology, 74, 2125–2135.

    Article  Google Scholar 

  • Grime, J. P. (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 1169–1174.

    Article  Google Scholar 

  • Grime, J. P. & Hunt, R. (1975) Relative growth rate: Its range and adaptive significance in a local flora. Journal of Ecology, 63, 393–422.

    Article  Google Scholar 

  • Gulmon, S. L. & Mooney, H.A. (ed.) (1986) Costs of defense on plant productivity. On the Economy of Plant Form and Function (ed. T. J. Givnish) Cambridge University Press, Cambridge, United Kingdom pp 681–698.

    Google Scholar 

  • Hansel, R. (1968) Characterization and physiological activity of some Kava constituents. Pacific Science, 22, 369–373.

    Google Scholar 

  • Haynes, R. J. (1986) Uptake and Assimilation of Mineral Nitrogen by Plants, Academic Press, Orlando.

    Google Scholar 

  • Hutchinson, G. E. (1967) Comparative studies of the ability of species to withstand prolonged periods of darkness. Journal of Ecology, 55, 291–299.

    Article  Google Scholar 

  • Janzen, D. H. (1975) Pseudomyrimex nigropilosa: A parasite of a mutualism. Science, 188, 936–937.

    Article  PubMed  CAS  Google Scholar 

  • Lebot, V. & Lévesque, J. (1989) The origin and distribution of kava (Piper methysticum Forts. F., Piperaceae): A phytochemical approach. Allertonia, 5, 223–278.

    Google Scholar 

  • Lewis, O. A. M. (1986) The Processing of Inorganic Nitrogen by the Plant. Camelot Press Ltd., Southampton.

    Google Scholar 

  • Loach, K. (1967) Shade tolerance in tree seedlings. I. Leaf photosynthesis and respiration in plants raised under artificial shade. New Phytologist, 66, 607–621.

    Article  CAS  Google Scholar 

  • MacKown, C. T., Jackson, W. A. & Volk, P. J. (1982) Restricted nitrate influx and reduction in corn seedlings exposed to ammonium. Plant Physiology, 69, 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Marquis, R. J. (1984) Leaf herbivores decrease fitness of a tropical plant. Science, 226, 537–539.

    Article  PubMed  CAS  Google Scholar 

  • Marquis, R. J. (1988) Phenological variation in the neotropical understory shrub Piper arieianum: Causes and consequences. Ecology, 69, 1552–1565.

    Article  Google Scholar 

  • Marquis, R. J. (1992) A bite is a bite is a bite? Constraints on response to folivory in Piper arieianum (Piperaceae). Ecology, 73, 143–152.

    Article  Google Scholar 

  • Matson, P. A., Vitousek, P.M., Ewel, J.J., Mazzarino, M.J. & Robertson, G.P. (1987) Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecology, 68, 491–502.

    Article  Google Scholar 

  • McDermitt, D. K. & Loomis, R. S. (1981) Elemental composition of biomass and its relation to energy content, growth efficiency, and growth yield. Annals of Botany, 48, 275–290.

    CAS  Google Scholar 

  • McIntosh, L. (1994) Molecular biology of the alternative oxidase. Plant Physiology, 105, 781–786.

    Article  PubMed  CAS  Google Scholar 

  • Mooney, H. A., Field, C.B. & Vázquez-Yanes, C. (eds.) (1984) Photosynthetic characteristics of wet tropical forest plants. Physiological Ecology of Plants of the Wet Tropics. Dr. Junk Publishers, The Hague, 254 p.

    Google Scholar 

  • Opler, P. A., Frankie, G.W. & Baker, H.G. (1980) Comparative phenological studies of treelet and shrub species in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology, 68, 167–188.

    Article  Google Scholar 

  • Orozco-Segovia, A., Vázquez-Yanes, C. (1989) Light effect on seed germination in Piper L. Acta Oecologia/Oecologia Planta, 10, 123–146.

    Google Scholar 

  • Orozco-Segovia, A., Sanchez-Coronado, M. E. & Vázquez-Yanes, C. (1993a) Effect of maternal light environment on seed germination in Piper auritum. Functional Ecology, 7, 395–402.

    Article  Google Scholar 

  • Orozco-Segovia, A., Sanchez-Coronado, M.E. & Vázquez-Yanes, C. (1993b) Light environment and phytochrome controlled germination in Piper auritum. Functional Ecology, 7, 585–590.

    Article  Google Scholar 

  • Osmond, C. B. (1983) Interactions between irradiance, nitrogen nutrition, and water stress in the sun-shade response of Solanum dulcamara. Oecologia, 57, 316–321.

    Article  Google Scholar 

  • Osunkjoya, O. O., Ash, J. E., Hopkins, M. S. & Graham, A. W. (1992) Factors affecting survival of tree seedlings in North Queensland rainforests. Oecologia, 91, 569–578.

    Article  Google Scholar 

  • Pate, J. S. (1986) Economy of symbiotic nitrogen fixation. On the Economy of Plant Form and Function (ed. T. J. Givnish) Cambridge University Press, Cambridge, United Kingdom.

    Google Scholar 

  • Pearcy, R. W. (1983) The light environment and growth of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia, 58, 19–25.

    Article  Google Scholar 

  • Pearcy, R. W. (1990) Sunflecks and photosynthesis in plant canopies. Annual Reviews of Plant Physiology and Plant Molecular Biology, 41, 421–453.

    Article  CAS  Google Scholar 

  • Penning De Vries, F. W. T., Brunsting, A. H. M. & Van Laar H. H. (1974) Products, requirements and efficiency of biosynthesis: A qualitative approach. Journal of Theoretical Biology, 45, 339–377.

    Article  PubMed  CAS  Google Scholar 

  • Rao, K. P. & Rains, D. W. (1976) Nitrate absorption by barley. I. Kinetics. Plant Physiology, 57, 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Reisenauer, H. M. (ed.) (1978) Absorption and utilization of ammonium nitrogen by plants. Nitrogen in the Environment. Academic Press, New York.

    Google Scholar 

  • Remmler, J. L. & Campbell, W. H. (1986) Regulation of corn leaf nitrate reductase. II. Synthesis and turnover of the enzyme’s activity and protein. Plant Physiology, 80, 442–447.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, J. F., Hilbert, D. W. & Kemp, P. R. (1992) Scaling ecophysiology from the plant to the ecosystem: A conceptual framework. Scaling Physiological Processes: Leaf to Globe (eds. J. R. Ehleringer & C. B. Field) Academic Press, San Diego.

    Google Scholar 

  • Risch, S. J. & Rickson, F. R. (1981) Mutualism in which ants must be present before plants produce food bodies. Nature, 291, 149–150.

    Article  Google Scholar 

  • Sanchez-Coronado, M. E., Rincón, E. & Vázquez-Yanes, C. (1990) Growth responses of three contrasting Piper species growing under different light conditions. Canadian Journal of Botany, 68, 1182–1186.

    Article  Google Scholar 

  • Sasakawa, H. & Yamamoto, Y. (1978) Comparison of the uptake of nitrate and ammonium by rice seedlings. Influences of light, temperature, oxygen concentration, exogenous sucrose, and metabolic inhibitors. Plant Physiology, 62, 665–669.

    Article  PubMed  CAS  Google Scholar 

  • Siedow, J. N. & Berthold, D. A. (1986) The alternative oxidase: A cyanide-resistant respiratory pathway in higher plants. Physiologia Plantarum, 66, 569–573.

    Article  CAS  Google Scholar 

  • Sharp, R. E., Matthews, M. A. & Boyer, J. S. (1984) Kok effect and the quantum yield of photosynthesis. Plant Physiology, 75, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, G. H., Hegarty, E. E. & Specht, R. L. (1988) Inorganic nitrogen assimilation in plants of Australian rainforest communities. Physiologia Plantarum, 74, 26–33.

    Article  CAS  Google Scholar 

  • Stitt, M. & Quick, W. P. (1989) Photosynthetic carbon partitioning, its regulation, and possibilities for manipulation. Physiologia Plantarum, 77, 633–641.

    Article  CAS  Google Scholar 

  • Thompson, W. A., Huang, L. -K. & Kriedemann, P. E. (1992). Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. II. Leaf gas exchange and component processes of photosynthesis. Australian Journal of Plant Physiology, 19, 19–42.

    Article  CAS  Google Scholar 

  • Tinoco-Ojanguren, C. & Pearcy, R. W. (1992) Dynamic stomatal behavior and its role in carbon gain during lightflecks of a gap phase and an understory Piper species acclimated to high and low light. Oecologia, 92, 222–228.

    Article  Google Scholar 

  • Tinoco-Ojanguren, C. & Pearcy, R. W. (1993a) Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. I. VPD effects on the transient stomatal response to lightflecks. Oecologia, 94, 288–294.

    Google Scholar 

  • Tinoco-Ojanguren, C. & Pearcy, R. W. (1993b) Stomatal dynamics and its importance to carbon gain in two rainforest Piper species. II. Stomatal versus biochemical limitations during photosynthetic induction. Oecologia, 92, 222–228.

    Article  Google Scholar 

  • Turnbull, M. H. (1991) The effect of light quantity and quality during development on the photosynthetic characteristics of six Australian rainforest tree species. Oecologia, 87, 110–117.

    Article  Google Scholar 

  • Vázquez-Yanes, C. (1976) Estudios sobre ecophysiologia de la germinación en una zona cálido-húmeda de Mexico. CECSA, Mexico City.

    Google Scholar 

  • Vázquez-Yanes, C., Orozco-Segovia, A., Rincón, E., Sánchez-Coronado, M.E., Huante, P., Toledo, J.R. & Varradas, V.L. (1990) Light beneath the litter in a tropical forest: Effect on seed germination. Ecology, 71, 1952–1958.

    Article  Google Scholar 

  • Vitousek, P. M. & Denslow, J. S. (1986) Nitrogen and phosphorus availability in treefall gaps of a lowland tropical rainforest. Journal of Ecology, 74, 1167–1178.

    Article  Google Scholar 

  • Vitousek, P. M. & Howarth, R. W. (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87–115.

    Article  Google Scholar 

  • Wallace, W. (1987) Regulation of nitrate utilization in higher plants. Inorganic Nitrogen Metabolism. Springer-Verlag, Berlin, pp 223–230.

    Google Scholar 

  • Walters, M. B. & Field, C. B. (1987) Photosynthetic light acclimation in two rainforest Piper species with different ecological amplitudes. Oecologia, 72, 449–456.

    Article  Google Scholar 

  • Whitmore, T. C. (1975) Tropical Rain Forests of the Far East. Clarendon, Oxford.

    Google Scholar 

  • Williams, K., Field, C. B. & Mooney, H. A. (1989) Relationships among leaf construction cost, leaf longevity, and light environment in rainforest plants of the genus Piper. The American Naturalist, 133, 198–211.

    Article  Google Scholar 

  • Woodward, F. I. (1990) From ecosystems to genes: The importance of shade tolerance. Trends in Ecology and Evolution, 5, 111–115.

    Article  Google Scholar 

  • Yoda, K. (1974) Three-dimensional distribution of light intensity in a tropical rainforest of West Malaysia. Japanese Journal of Ecology, 24, 247–254.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Fredeen, A.L., Field, C.B. (1996). Ecophysiological Constraints on the Distribution of Piper Species. In: Mulkey, S.S., Chazdon, R.L., Smith, A.P. (eds) Tropical Forest Plant Ecophysiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1163-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1163-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8493-2

  • Online ISBN: 978-1-4613-1163-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics