Skip to main content

A Perceptually Motivated Three-Component Image Model

  • Chapter
Video Coding

Abstract

Some psychovisual properties of the human visual system (HVS) are discussed and interpreted in a mathematical framework. The formation of perception on monocular images is described by minimization problems based on the special properties of human binocular vision. The edge information, which is found to be of primary importance in visual perception, forms the constraint in the minimization problems. The smooth areas of an image influence human perception together with the edge information. After the concept of edge strength is introduced, it is demonstrated that strong edges are of higher perceptual importance than weaker edges (textures). The notion of a stressed image is introduced and used in the extraction of strong edges; the stressed image is further decomposed into the primary component of strong edges and the smooth variation component. The image is, therefore, decomposed into primary, smooth and texture components. Coding schemes are developed for the three components; the primary component is encoded in intensity and geometric information, and the smooth and texture components are encoded using waveform coding techniques, leading to a hybrid of waveform coding and second generation coding techniques. The above hybrid system is of both high subjective and objective performance, especially at very low bit rates, and is further perceptually tuned for smooth and texture components based on the contrast-sensitivity of the HVS. This perceptually tuned hybrid system can be applied directly to components of color images and to the intra-coded frames in motion video sequences. The above image model has been generalized to a complex-valued 1-D case for an efficient representation of planar curves. Likewise, it can be generalized to a 3-D case for video coding and processing. We are also pursuing an approach for video coding based on the digital image warping techniques, in which the primary components of the three-component image models provide perceptually meaningful features for the specification of warping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Habibi and P. A. Wintz, “Image coding by linear transformation and block quantization,” IEEE Trans. Commun. Tech., vol. COM-19, pp. 50–62, Feb. 1971.

    Article  Google Scholar 

  2. W. H. Chen and C. H. Smith, “Adaptive coding of monochrome and color images,” IEEE Trans. Commun., vol. COM-25, pp. 1285–1292, Nov. 1977.

    Article  Google Scholar 

  3. W. H. Chen and W. K. Pratt, “Scene adaptive coder,” IEEE Trans. Commun., vol. COM-32, pp. 225–232, Mar. 1984.

    Article  Google Scholar 

  4. W. A. Pearlman, “Adaptive cosine transform image coding with constant block distortion,” IEEE Trans. Commun., vol. COM-38, pp. 698–703, May 1990.

    Article  Google Scholar 

  5. G. K. Wallace, “The JPEG still picture compression standard,” Commun. ACM, vol. 34, pp. 30–44, Apr. 1991.

    Article  Google Scholar 

  6. M. Liou, “Overview of the px64 kbit/s video coding standard,” Commun. ACM, vol. 34, pp. 60–63, Apr. 1991.

    Article  Google Scholar 

  7. D. LeGall, “MPEG: a video compression standard for multimedia applications,” Commun. ACM, vol. 34, pp. 47–58, Apr. 1991.

    Article  Google Scholar 

  8. ITU-T Draft Recommendation H.262, “Generic coding of moving pictures and associated audio,” 1993.

    Google Scholar 

  9. ITU-T Draft Recommendation H.263, “Video coding for narrow telecommunication channel at < 64 kbit/s,” 1995.

    Google Scholar 

  10. J. W. Woods and S. D. O’Neil, “Subband coding of images,” IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-34, pp. 1105–1115, Nov. 1986.

    Article  Google Scholar 

  11. H. Gharavi and A. Tabatabai, “Sub-band coding of monochrome and color images,” IEEE Trans. Circuits and Systems, vol. 35, pp. 207–214, Feb. 1988.

    Article  Google Scholar 

  12. P. H. Westerink, D. E. Boekee, J. Biemond and J. W. Woods, “Sub-band coding of images using vector quantization,” IEEE Trans. Commun., vol. 36, pp. 713–719, Jun. 1988.

    Article  Google Scholar 

  13. N. Tanabe and N. Farvardin, “Subband image coding using entropy-coded quantization over noisy channels,” IEEE Journal of Selected Areas in Communications, vol. 10, pp. 926–943, Jun. 1992.

    Article  Google Scholar 

  14. Y. H. Kim and J. W. Modestino, “Adaptive entropy coded subband coding of images,” IEEE Trans. Image Processing, vol. 1, pp. 31–48, Jan. 1992.

    Article  Google Scholar 

  15. M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image coding using wavelet transform,” IEEE Trans. Image Processing, vol. 1, pp. 205–220, Apr. 1992.

    Article  Google Scholar 

  16. Y. Linde, A. Buzo and R. M. Gray, “An algorithm for vector quantizer design,” IEEE Trans. Commun., vol. COM-28, pp. 84–95, Jan. 1980.

    Article  Google Scholar 

  17. N.M. Nasrabadi and R. A. King, “Image coding using vector quantization: a review,” IEEE Trans. Commun., vol. COM-36, pp. 957–971, Aug. 1988.

    Article  Google Scholar 

  18. N. S. Jayant and P. Noll, Digital coding of waveforms, principles and applications to speech and video, Englewood Cliff, NJ: Prentice-Hall, 1984.

    Google Scholar 

  19. A. Gersho and R. M. Gray, Vector quantization and signal compression, Kluwer Academic Publishers, Boston, 1992.

    MATH  Google Scholar 

  20. B. Ramamurthi and A. Gersho, “Classified vector quantization of images,” IEEE Trans. Commun., vol. COM-34, pp. 1105–1115, Nov. 1986.

    Article  Google Scholar 

  21. D. Chen and A. Bovik, “Visual pattern image recognition,” IEEE Trans. Commun., vol. 38, pp. 2137–2146, Dec. 1990.

    Article  Google Scholar 

  22. A. N. Netravali and B. Prasada, “Adaptive quantization of picture signals using spatial masking,” Proc. IEEE, vol. 65, pp. 536–548, 1977.

    Article  Google Scholar 

  23. J. O. Limb and C. B. Rubinstein, “On the design of quantizers for DPCM coders: a functional relationship between visibility, probability and masking,” IEEE Trans. Commun., vol. COM-26, pp. 573–578, 1978.

    Article  Google Scholar 

  24. R. J. Safranek and J. D. Johnston, “A perceptually tuned sub-band image coder with image dependent quantization and post-quantization data compression,” Proc. IEEE ICASSP, pp. 1945–1948, May 1989.

    Google Scholar 

  25. M. Kunt, A. Ikonomopoulos, and M. Kocher, “Second-generation image-coding techniques,” Proceedings of the IEEE, vol. 73, No. 4, pp. 549–574, Apr. 1985.

    Article  Google Scholar 

  26. M. Kunt, M. Benard, and R. Leonardi, “Recent results in high-compression image coding,” IEEE Trans. Circuit and Systems, vol. CAS-34, No. 11, pp. 1306–1336, Nov. 1987.

    Article  Google Scholar 

  27. S. Carlsson, “Sketched based coding of grey level images,” Signal Processing, vol. 15, No. 1, pp. 57–83, Jul. 1988.

    Article  Google Scholar 

  28. S. Carlsson, C. Reillo, and L. H. Zetterberg, “Sketched based representation of grey value and motion information,” in From Pixels to Features by J. C. Simon (ed.) Elsevier Science Publishers B.V. (North-Holland), 1989.

    Google Scholar 

  29. J. K. Yan and D. J. Sakrison, “Encoding of images based on a two-component source model,” IEEE Trans, on Communications, vol. COM-25, No. 11, pp. 1315–1322, Nov. 1977.

    Article  Google Scholar 

  30. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B 207, pp. 187–217, 1980.

    Article  Google Scholar 

  31. X. Ran and N. Farvardin, “A perceptually motivated three-component image model — Part I: Description of the model” IEEE Trans. Image Processing, vol.4, pp. 401–415, Apr. 1995.

    Article  Google Scholar 

  32. H. Helmholtz, Treatise on Physiological Optics, edited by J. Southall, vol. III, The Perceptions of Vision, the Optical Society of America, Menasha, Wisconsin: George Bonta Publishing Company, 1925.

    Google Scholar 

  33. T. Cornsweet, Visual Perception, New York and London: Academic Press, 1970.

    Google Scholar 

  34. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol., 197, pp. 551–566, 1968.

    Google Scholar 

  35. A. N. Netravali and B. G. Haskell, Digital pictures, representation and compression, Plenum Press, New York, 1988.

    Google Scholar 

  36. J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion on the encoding of images,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 525–536, Jul. 1974.

    Article  MATH  Google Scholar 

  37. W. Grimson, “Surface consistency constraints in vision,” Computer Vision, Graphics, and Image Processing 24, pp. 28–51, 1983.

    Article  Google Scholar 

  38. D. G. Luenberger, Linear and Nonlinear Programming, Menlo Park, CA: Addison-Wesley Publishing Company, 1984.

    MATH  Google Scholar 

  39. W. Hackbusch, Multi-Grid Methods and Applications, Berlin, Heidelberg, New York and Tokyo: Springer-Verlag, 1985.

    MATH  Google Scholar 

  40. D. M. Young, Iterative Solution of Large Linear Systems, New York and London: Academic Press, 1971.

    MATH  Google Scholar 

  41. X. Ran, “A three-component image model for human visual perception and its application in image coding and processing,” Ph.D. dissertation, University of Maryland, College Park, MD. Aug. 1992.

    Google Scholar 

  42. P. Chou and N. Pagano, Elasticity, Tensor, Dyadic, and Engineering Approaches, Princeton, NJ: D. Van Nostrand Company, 1967.

    Google Scholar 

  43. T. S. Huang, “Coding of two-tone images,” IEEE Trans, on Communications, vol. COM-25, No. 11, pp. 1406–1424, Nov. 1977.

    Article  MATH  Google Scholar 

  44. D. N. Graham, “Image transmission by two-dimensional contour coding,” Proceedings of IEEE, vol. 55, No. 3, pp. 336–346, Mar. 1967.

    Article  Google Scholar 

  45. H. Freeman, “On the encoding of arbitrary geometric configuration,” IRE Trans. Electron. Comput., EC-10, pp. 260–268, Jun. 1961.

    Article  MathSciNet  Google Scholar 

  46. D. L. Neuhoff and K. G. Castor, “A rate and distortion analysis of chain codes for line drawings,” IEEE Trans. Inform. Theory, vol. IT-31, pp. 53–67, Jan. 1985.

    Article  MATH  Google Scholar 

  47. M. Eden and M. Kocher, “On the performance of a contour coding algorithm in the context of image coding. Part I: Contour segment coding,” Signal Processing, vol. 8, pp. 381–386, 1985.

    Article  Google Scholar 

  48. J.J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM J. Res. Develop., pp. 198–203, May 1976.

    Google Scholar 

  49. I. H. Witten, R. M. Neal and J. G. Cleary, “Arithmetic coding for data compression,” Commun. ACM, vol. 30, pp. 520–540, Jun. 1987.

    Article  Google Scholar 

  50. O. R. Mitchell and A. Tabatabai, “Adaptive transform image coding for human analysis,” Proc. ICC, pp. 23.2.1–23.2.5, 1979.

    Google Scholar 

  51. R. C. Reininger and J. D. Gibson, “Distributions of the two-dimensional DCT coefficients for images,” IEEE Trans. Commun., vol. COM-31, pp. 835–839, Jun. 1983.

    Article  Google Scholar 

  52. N. Farvardin and J. W. Modestino, “Optimum quantizer performance for a class of non-Gaussian memoryless sources,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 485–497, May 1984.

    Article  MathSciNet  MATH  Google Scholar 

  53. A. V. Trushkin, “Optimal bit allocation algorithm for quantizing a random vector,” Problems of Inform. Transmission, vol. 17, pp. 156–161, 1981.

    MATH  Google Scholar 

  54. H. Gish and J. N. Pierce, “Asymptotically efficient quantizing,” IEEE Trans. Inform. Theory, vol. IT-14, pp. 676–683, Sep. 1968.

    Article  Google Scholar 

  55. T. Berger, Rate distortion theory, Englewood Cliff, NJ: Prentice-Hall, 1971.

    Google Scholar 

  56. J. M. Shapiro, “An embedded wavelet hierarchical image coder,” in Proc. IEEE ICASSP, pp. IV.657–IV.660, March 1992.

    Google Scholar 

  57. F. Kessentini, M. J. T. Smith and C. F. Barnes, “Image coding with variable rate RVQ,” in Proc. IEEE ICASSP, pp. III.369–III.372, March 1992.

    Google Scholar 

  58. X. Ran and N. Farvardin, “A perceptually-motivated three-component image model — Part II: Applications to image compression,” IEEE Trans. Image Processing, vol.4, pp. 430–447, Apr. 1995.

    Article  Google Scholar 

  59. M. G. Perkins and T. Lookabaugh, “A psychophysically justified bit allocation algorithm for subband image coding systems,” Proc. IEEE ICASSP, pp. 1815–1818, May 1989.

    Google Scholar 

  60. X. Ran and N. Farvardin, “On planar curve representation,” Proc. of IEEE ICIP, pp. I-676–I-680, Nov. 1994.

    Google Scholar 

  61. T. Beier and S. Neely, “Feature-based image metamorphosis,” Computer Graphics, 26, 2, pp. 35–42, Jul. 1992.

    Article  Google Scholar 

  62. G. Wolberg, Digital image warping, IEEE Computer Society Press, Los Alamitos, CA, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers Boston

About this chapter

Cite this chapter

Farvardin, N., Ran, X. (1996). A Perceptually Motivated Three-Component Image Model. In: Torres, L., Kunt, M. (eds) Video Coding. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1337-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1337-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8575-5

  • Online ISBN: 978-1-4613-1337-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics