Skip to main content

Abstract

The background, terminology, and theory of a technique (called the Method of Imprecision or MOI) to formally represent and manipulate imprecise information in engineering design calculations is reviewed here [3, 29, 30, 33, 36, 37, 38, 39, 43, 56, 57, 58, 59, 60]. The method utilizes fuzzy sets to capture designers’ and customers’ preferences. Formal methods for including noise, trade-off strategies and design iteration are included.

Two illustrative examples (one of an air tank design, the other the design of a braking system for a passenger vehicle) are presented. The examples emphasize a compareson of different solution alternatives during preliminary engineering design, involving realistic design complexities and decision criteria. Sample numerical and graphical results are given for the applications, including the imprecise input design variables and output performance variables of the design examples. Normalized measures of the importance of, and coupling between, design variables are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AKAO, Y. Quality Function Deployment: Integrating Customer Requirements into Product Design. Productivity Press, Cambridge, 1990.

    Google Scholar 

  2. ALGER, J., AND HAYS, C. Creative Synthesis in Design. Prentice Hall, Englewood Cliffs, 1964.

    Google Scholar 

  3. ANTONSSON, E. K., AND OTTO, K. N. Imprecision in Engineering Design. ASME Journal of Mechanical Design 117(B) (Special Combined Issue of the Transactions of the ASME commemorating the 50th anniversary of the Design Engineering Division of the ASME.) (June 1995), 25–32. Invited paper.

    Article  Google Scholar 

  4. ASIMOW, M. Introduction to Design. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962.

    Google Scholar 

  5. BELLMAN, R. E., AND GIERTZ, M. On the analytic formalism of the theory of fuzzy sets. Information Sciences 5 (1973), 149–156.

    Article  MathSciNet  Google Scholar 

  6. BIEGEL, P., AND PECHT, M. Design trade-offs made easy. Concurrent Engineering 1, 3 (May/June 1991), 29–40.

    Google Scholar 

  7. COLTON, J., AND DESCANIO, J. An integrated, intelligent design environment. Engineering with Computers 7 (1991), 11–22.

    Article  Google Scholar 

  8. Cox, R. T. The Algebra of Probable Inference. Johns-Hopkins University Press, Baltimore, MD, 1961.

    MATH  Google Scholar 

  9. DEGROOT, M. H. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

    MATH  Google Scholar 

  10. DLESK, D. C., AND LIEBMAN, J. S. Multiple objective engineering optimization. Engineering Optimization 6, (1983), 161–175.

    Article  Google Scholar 

  11. DONG, W. M., AND WONG, F. S. Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets and Systems 21, 2 (Feb. 1987), 183–199.

    Article  MathSciNet  MATH  Google Scholar 

  12. DUBOIS, D., AND PRADE, H. Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, 1980.

    MATH  Google Scholar 

  13. DUBOIS, D., AND PRADE, H. A class of fuzzy measures based on triangular norms. International Journal of General Systems 8 (1982), 43–61.

    Article  MathSciNet  MATH  Google Scholar 

  14. DUBOIS, D., AND PRADE, H. Criteria aggregation and ranking of alternatives in the framework of fuzzy sets. In TIMS/Studies in the Management Sciences (1984), Elsevier Science Publishers B.V., North-Holland, pp. 209–240.

    Google Scholar 

  15. DUBOIS, D., AND PRADE, H. Possibility Theory: An Approach to the Computerized Processing of Information. Plenum Press, New York, 1988.

    Google Scholar 

  16. ESCHENAUER, H., KOSKI, J., AND OSYCZKA, A., Eds. Multicriteria Design Optimization. Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  17. FISHBURN, P. Foundations of Expected Utility. D. Reidel, 1982.

    MATH  Google Scholar 

  18. FISHBURN, P. Normative theories of decision making under risk and under uncertainty. In Non-Conventional Preference Relations in Decision Making, J. Kacprzyk and M. Roubens, Eds. Springer-Verlag, New York, 1988, pp. 1–21.

    Google Scholar 

  19. FISHBURN, P.C. Uncertainty aversion and separated effects in decision making under uncertainty. In Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making, J. Kacprzyk and M. Fedrizzi, Eds. Springer-Verlag, New York, 1988. Springer Lecture Notes in Economics and Mathematical Systems, vol. 310.

    Google Scholar 

  20. FRENCH, S. Decision Theory: An Introduction to the Mathematics of Rationality. Ellis Horwood, Chichester, 1988.

    MATH  Google Scholar 

  21. GAVIN, JR., J. G. Fly me to the Moon: An interview with Joseph G. Gavin, Jr. Technology Review 97, 5 (July 1994), 61–68.

    Google Scholar 

  22. HALMOS, P. Measure Theory. Springer-Verlag, New York, 1974.

    MATH  Google Scholar 

  23. HAUSER, J., AND CLAUSING, D. The house of quality. Harvard Business Review (May/June 1988), 63–73.

    Google Scholar 

  24. HOELTZEL, D. A., AND CHIENG, W.-H. Systems for unified life-cycle mechanical engineering design: Shared-tool architectures versus distributed tool architectures. Engineering with Computers 6, 4 (1990), 211–222.

    Article  Google Scholar 

  25. HOLMES, M. F. Machine dynamics, The need for greater productivity. In Research Needs in Mechanical Systems (New York, 1984), K. N. Reid, Ed., ASME, pp. 140–159.

    Google Scholar 

  26. KACPRZYK, J., AND ROUBENS, M., Eds. Non-Conventional Preference Relations in Decision Making, vol. 301 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, New York, 1988.

    Google Scholar 

  27. KEENEY, R., AND RAIFFA, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Cambridge University Press, Cambridge, U.K., 1993.

    Google Scholar 

  28. KRANTZ, D., LUCE, R., SUPPES, P., AND TVERSKY, A. Foundations of Measurement, vol. I. Academic Press, New York, 1971.

    MATH  Google Scholar 

  29. LAW, W. S., AND ANTONSSON, E. K. Hierarchical Imprecise Design with Weights. In Proceedings of the Fourth IEEE International Conference on Fuzzy Systems (FUZZ-IEEE/IFES’95) (Mar. 1995), vol. 1, IEEE, pp. 383–388.

    Google Scholar 

  30. LAW, W. S., AND ANTONSSON, E. K. Optimization Methods for Calculating Design Imprecision. In Advances in Design Automation — 1995 (Sept. 1995), vol. 1, ASME, pp. 471–476.

    Google Scholar 

  31. OSYCSKA, A. Multi-Criterion Optimization in Engineering with Fortran Examples. Halstad Press, New York, 1984.

    Google Scholar 

  32. OTTO, K.N. A Formal Representational Theory for Engineering Design. PhD thesis, California Institute of Technology, Pasadena, CA, June 1992.

    Google Scholar 

  33. OTTO, K. N., AND ANTONSSON, E. K. Trade-Off Strategies in Engineering Design. Research in Engineering Design 3, 2 (1991), 87–104.

    Article  Google Scholar 

  34. OTTO, K. N., AND ANTONSSON, E. K. Trade-Off Strategies in the Solution of Imprecise Design Problems. In Fuzzy Engineering toward Human Friendly Systems: Proceedings of the International Fuzzy Engineering Symposium’91, Volume 1 (Yokohama, Japan, Nov. 1991), T. Terano et al., Eds., LIFE, IFES, pp. 422–433.

    Google Scholar 

  35. OTTO, K. N., AND ANTONSSON, E. K. The Method of Imprecision Compared to Utility Theory for Design Selection Problems. In Design Theory and Methodology — DTM’93 (Sept. 1993), ASME, pp. 167–173.

    Google Scholar 

  36. OTTO, K. N., AND ANTONSSON, E. K. Tuning Parameters in Engineering Design. ASME Journal of Mechanical Design 115, 1 (Mar. 1993), 14–19.

    Article  Google Scholar 

  37. OTTO, K. N., AND ANTONSSON, E. K. Design Parameter Selection in the Presence of Noise. Research in Engineering Design 6, 4 (1994), 234–246.

    Article  Google Scholar 

  38. OTTO, K. N., LEWIS, A. D., AND ANTONSSON, E. K. Approximating a-cuts with the Vertex Method. Fuzzy Sets and Systems 55, 1 (Apr. 1993), 43–50.

    Article  MathSciNet  MATH  Google Scholar 

  39. OTTO, K. N., LEWIS, A. D., AND ANTONSSON, E. K. Determining optimal points of membership with dependent variables. Fuzzy Sets and Systems 60, 1 (Nov. 1993), 19–24.

    Article  MathSciNet  Google Scholar 

  40. PAPALAMBROS, P., AND WILDE, D. Principles of Optimal Design. Cambridge University Press, New York, 1988.

    MATH  Google Scholar 

  41. PUGH, S. Total Design. Addison-Wesley, New York, 1990.

    Google Scholar 

  42. SANDGREN, E. A multi-objective design tree approach for the optimization of mechanisms. Mechanisms and Machine Theory 25, 3 (1990), 257–272.

    Article  Google Scholar 

  43. SCOTT, M. J., AND ANTONSSON, E. K. Aggregation Functions for Engineering Design Trade-offs. In 9th International Conference on Design Theory and Methodology (Sept. 1995), vol. 2, ASME, pp. 389–396.

    Google Scholar 

  44. SHIGLEY, J. E., AND MITCHELL, L. D. Mechanical Engineering Design, fourth ed. McGraw-Hill Book Company, New York, 1983.

    Google Scholar 

  45. SIDDAL, J. N. Analytical Decision Making in Engineering Design. Prentice-Hall, 1972.

    Google Scholar 

  46. STEUER, R. Multiple Criteria Optimization: Theory, Computation, and Application. J. Wiley, New York, 1986.

    MATH  Google Scholar 

  47. SUGENO, M. Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology, 1974.

    Google Scholar 

  48. SUGENO, M. Fuzzy measures and fuzzy integrals — a survey. In Fuzzy Automata and Decision Processes (New York, 1977), M. Gupta et al., Eds., North-Holland, pp. 89–102.

    Google Scholar 

  49. SULLIVAN, L. P. Quality function deployment. Quality Progress (June 1986), 39–50.

    Google Scholar 

  50. SVESHNIKOV, A. Problems in Probability Theory, Mathematical Statistics, and the Theory of Random Functions. Dover Publications, New York, 1968.

    Google Scholar 

  51. TRIBUS, M. Rational Descriptions, Decisions, and Designs. Pergamon Press, New York, 1969.

    Google Scholar 

  52. ULLMAN, D. G. The Mechanical Design Process. McGraw Hill, New York, 1992.

    Google Scholar 

  53. ULRICH, K. T., AND PEARSON, S. A. Does product design really determine 80% of manufacturing cost? Working Paper MSA 3601–93, MIT, Sloan School of Management, Cambridge, MA, Aug. 1993.

    Google Scholar 

  54. WARD, A. C., LIKER, J. K., SOBEK, D. K., AND CRISTIANO, J. J. Set-based concurrent engineering and Toyota. In Design Theory and Methodology — DTM’94 (Sept. 1994), vol. DE68, ASME, pp. 79–90.

    Google Scholar 

  55. WHITNEY, D. E. Manufacturing by design. Harvard Business Review 66, 4 (July 1988), 83–91.

    Google Scholar 

  56. WOOD, K. L., AND ANTONSSON, E. K. Computations with Imprecise Parameters in Engineering Design: Background and Theory. ASME Journal of Mechanisms, Transmissions, and Automation in Design 111, 4 (Dec. 1989), 616–625.

    Article  Google Scholar 

  57. WOOD, K. L., AND ANTONSSON, E. K. Modeling Imprecision and Uncertainty in Preliminary Engineering Design. Mechanism and Machine Theory 25, 3 (Feb. 1990), 305–324. Invited paper.

    Article  Google Scholar 

  58. WOOD, K. L., ANTONSSON, E. K., AND BECK, J. L. Representing Imprecision in Engineering Design — Comparing Fuzzy and Probability Calculus. Research in Engineering Design 1, 3/4 (1990), 187–203.

    Article  Google Scholar 

  59. WOOD, K. L., OTTO, K. N., AND ANTONSSON, E. K. A Formal Method for Representing Uncertainties in Engineering Design. In First International Workshop on Formal Methods in Engineering Design (Fort Collins, Colorado, Jan. 1990), P. Fitzhorn, Ed., Colorado State University, pp. 202–246.

    Google Scholar 

  60. WOOD, K. L., OTTO, K. N., AND ANTONSSON, E. K. Engineering Design Calculations with Fuzzy Parameters. Fuzzy Sets and Systems 52, 1 (Nov. 1992), 1–20.

    Article  Google Scholar 

  61. WOODSON, T. Introduction to Engineering Design. McGraw-Hill, New York, 1966.

    Google Scholar 

  62. YAGER, R. Fuzzy decision making including unequal objectives. Fuzzy Sets and Systems 1 (1978), 87–95.

    Article  MATH  Google Scholar 

  63. ZADEH, L. A. Fuzzy sets. Information and Control 8 (1965), 338–353.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Antonsson, E.K., Otto, K.N., Wood, K.L. (1996). Modeling Imprecision in Engineering Design. In: Sebastian, HJ., Antonsson, E.K. (eds) Fuzzy Sets in Engineering Design and Configuration. International Series in Intelligent Technologies, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1459-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1459-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8636-3

  • Online ISBN: 978-1-4613-1459-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics