Skip to main content

Circuit Models of Sensory Transduction in the Cochlea

  • Chapter
Analog VLSI Implementation of Neural Systems

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 80))

Abstract

Nonlinear signal processing is an integral part of sensory transduction in the nervous system. Sensory inputs are analog, continuous-time signals with a large dynamic range, whereas central neurons encode information with limited dynamic range and temporal specificity, using fixed-width, fixed-height pulses. Sensory transduction uses nonlinear signal processing to reduce real-world input to a neural representation, with a minimal loss of information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dallos, P. (1985). Response characteristics of mammalian cochlear hair cells. J. Neurosci. 5: 1591–1608.

    Google Scholar 

  • Evans, E. F. (1982). Functional anatomy of the auditory system. In Barlow, H. B. and Mollon, J. D. (eds), The Senses. Cambridge, England: Cambridge University Press, p. 251.

    Google Scholar 

  • Geisler, C.D. and Greenberg, S. (1986). A two-stage nonlinear cochlear model posseses automatic gain control. J. Acoust. Soc. Am. 80: 1359–1363.

    Article  Google Scholar 

  • Greenberg, S. (1988). The ear as a speech analyzer. J. Phonetics 16: 139–149.

    Google Scholar 

  • Kiang, N. Y.-S, Watenabe, T., Thomas, E.C., and Clark, L.F. (1965). Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Cambridge, MA: M.I.T Press.

    Google Scholar 

  • Kiang, N. Y.-S, (1980). Processing of speech by the auditory nervous system. J. Acoust. Soc. Am. 68: 830–835.

    Article  Google Scholar 

  • Kim, D. O. (1984). Functional roles of the inner- and outer-haircell subsystems in the cochlea and brainstem. In Berlin, C. I. (ed), Hearing Science. San Diego, CA: College-Hill Press, p. 241.

    Google Scholar 

  • Lazzaro, J. P. and Mead, C.A. (1989). Silicon models of auditory localization, Neural Computation 1: 41–70.

    Article  Google Scholar 

  • Lyon, R. F. and Mead, C. A. (1988a). An analog electronic cochlea. IEEE Trans. Acoust., Speech, Signal Processing 36: 1119–1134.

    Article  MATH  Google Scholar 

  • Lyon, R. F. and Mead, C. A. (1988b). Cochlear Hydrodynamics Demystified. Caltech Computer Science Technical Report Caltech-CS-TR-88–4, Pasadena, CA, February.

    Google Scholar 

  • Mead, C. A. (1989). Analog VLSI and Neural Systems. Reading, MA: Addison-Wesley.

    MATH  Google Scholar 

  • Rhode, W. S. (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J. Acoust. Soc. Am. 49: 1218–1231.

    Article  Google Scholar 

  • Rhode, W. S., Geisler, C.D., and Kennedy, D.T. (1978). Auditory nerve fiber response to wide-band noise and tone combinations. J. Neurophysiol. 41: 692–704.

    Google Scholar 

  • Robles, L., Rhode, W. S., and Geisler, C.D. (1976) Transient response of basilar membrane measured in squirrel monkeys using the Mossbauer effect. J. Acoust. Soc. Am. 59: 926–939.

    Article  Google Scholar 

  • Rose, J.E., Hind, J.E., Anderson, D. J., and Brugge, J. F. (1971). Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J. Neurophysiol. 34: 685–699.

    Google Scholar 

  • Sachs, M. B. and Abbas, P. J. (1974) Rate versus level functions for auditory-nerve fibers in cats: Tone-burst stimuli. J. Acoust. Soc. Am. 56: 1835–1847.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lazzaro, J., Mead, C. (1989). Circuit Models of Sensory Transduction in the Cochlea. In: Mead, C., Ismail, M. (eds) Analog VLSI Implementation of Neural Systems. The Kluwer International Series in Engineering and Computer Science, vol 80. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1639-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1639-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8905-0

  • Online ISBN: 978-1-4613-1639-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics