Skip to main content

Neurobiology of the Echinodermata

  • Chapter
Nervous Systems in Invertebrates

Abstract

There has been little progress since the classical anatomical studies in understanding the form and function of the nervous system of echinoderms until relatively recently. There is, admittedly, a substantial behavioural literature but much of this can be confusing and even contradictory. There were early attempts to record electrical activity with extracellular electrodes but the compound potentials recorded to gross stimulation were clearly highly artifactual. Brehm (1977) showed that it was possible to record single unit activity extracellularly and further that this was possible because the brittlestar preparation that he used contained neurones much larger than average. Since then the large neurones of brittlestars have been exploited to produce a growing amount of information about function in echinoderm nervous systems at the cellular level. It is possible to use multiple recording sites from intact animals and monitor the activity that co-ordinates behaviour. There is data on the sensory perception of a range of environmental parameters. These direct electrophysiological measurements of response to stimuli are invariably consistent and are thus much more valuable than the inconsistent behavioural criteria previously used. It is also now possible to record intracellularly from both ectoneural neurones and hyponeural neurones. Lucifer yellow can be injected iontophoretically into both classes of neurones and preliminary data has now been obtained on the general morphology of individual cells within the nervous system (Cobb 1985). The radial nerve cords consist of connected segmental ganglia. The layout of the large neurones in each segmental ganglia is similar whatever the position of the ganglia within the radial nerve cords. Longitudinally running large neurones pass through at least 4 or 5 segments and show a fine plexus of varicose terminals at each end. These neurones are multimodal in the information they transmit about changes in the environment. The circumoral ring does not show complex structure but appears to act as a connection between the radial nerve cords and does not appear to contain organizing centres. The present evidence suggests that any part of the radial nerve cords when receiving significant local sensory input can act to coordinate whole animal behaviour and thus the echinoderms can be considered “brainless”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiello E (1972) Control of ciliary activity in metazoa. In: Sleigh MA (ed) Cilia and flagella. Academic Press, New York.

    Google Scholar 

  • Arshavskii Y, Kashin S, Litvinova N, Orlovskii G, Fel’dman A (1975) Coordination of arm movement during locomotion in ophiurians. Neurophysiol 8: 529–537.

    Google Scholar 

  • Arshavskii Y, Kashin S, litvinova N, Orlovskii G, Fel’dman A (1976) Coordination of movements of the tubefeet and arms of ophiurians during locomotion. Neurophysiol 8: 633–669.

    Google Scholar 

  • Bargmann W, Behrens B (1963) Uber den Feinbau des Nervensystems des Seesternes (Asterias rubens L.). II. Z Zellforsch 59:746–770.

    Google Scholar 

  • Bargmann W, Behrens B (1968) Uber des Pylorusanhange des Seesternes (Asterias rubens L.) inbesondere ihre Innervation. Z Zellforsch 84: 536–584.

    Google Scholar 

  • Bargmann W, von Hehn G (1968) Uber das axialorgan (’mysterious organ’) von Asterias rubens. Z Zellforsch 88: 262–277.

    PubMed  CAS  Google Scholar 

  • Biglow CE (1981) Investigation of variable tensility in echinoderm connective tissue. B Sc thesis, University of Victoria.

    Google Scholar 

  • Binyon J, Hasler B (1970) Electrophysiology of the starfish radial nerve cord. Comp Biochem Physiol 32: 747–753.

    CAS  Google Scholar 

  • Blaschko H, Hope D (1957) Observation on the distribution of amine oxidases in invertebrates. Arch Biochem Biophys 69: 10–15.

    PubMed  CAS  Google Scholar 

  • Bouland C, Massin C, Jangoux M (1982) The fine structure of the buccal tentacles of Holothuria forskali. Zoomorphol 101: 133–149.

    Google Scholar 

  • Brehm P (1977) Electrophysiology and luminescence of an ophiuroid radial nerve. J Exp Biol 71: 213–227.

    PubMed  CAS  Google Scholar 

  • Bullock TH (1965) Comparative aspects of superficial conduction in echinoids and asteroids. Amer Zool 5: 545–562.

    CAS  Google Scholar 

  • Bullock TH, Horridge A (1965) Structure and function in invertebrate nervous systems. Freeman and Co., San Francisco and London.

    Google Scholar 

  • Burke RD (1978) The structure of the nervous system of the pluteus larvae of Strongylocentrotus purpuratus Cell Tissue Res 191: 233–247.

    CAS  Google Scholar 

  • Burke RD (1980a) Morphogenesis of the digestive tract of the pluteus larvae of Strongylocentrotus purpuratus. Int J Invertbr Reprod 2: 13–21.

    Google Scholar 

  • Burke RD (1980b) Podial sensory receptors and the induction of metamorphosis in echinoids. J Exp Mar Biol Ecol 47: 223–234.

    Google Scholar 

  • Burke RD (1983a) Neural control of metamorphosis in Dendraster excentricus. Biol Bull 164: 176–188.

    Google Scholar 

  • Burke RD (1983b) The induction of metamorphosis of marine invertebrate larvae: stimulus and response. Can J Zool 61: 1701–1719.

    Google Scholar 

  • Burke RD (1983c) The structure of the larval nervous system of Pisaster ochraceus. J Morphol 178: 23–35.

    Google Scholar 

  • Burke RD (1983d) Development of the larval nervous system of the sand dollar, Dendraster excentricus. Cell Tissue Res 229: 145–154.

    PubMed  CAS  Google Scholar 

  • Byrne M (1982) Functional morphology of a holothurian autotomy plane and its role in evisceration. In: Lawrence J (ed) International echinoderms conference, Tampa. Balkema, Rotterdam.

    Google Scholar 

  • Byrne M (1986) Ultrastructural changes in the autotomy tissues of Eupentacta quinquesemita during evisceration. In: Keegan B, O’Connor B(eds) Proceedings of 5th international echinoderms conference. Balkema, Rotterdam.

    Google Scholar 

  • Byrne M, Fontaine AR (1983) Morphology and function of the tubefeet of Florometra serratissima. Zoomorphol 102: 175–187.

    Google Scholar 

  • Caine GD, Burke RD (1985) Immunohistochemical localization of gonad stimulating substance in the starfish. In: Keegan B, O’Connor B (eds) Proceedings of 5th international echinoderms conference. Balkema, Rotterdam.

    Google Scholar 

  • Campbell AC (1983) Form and Function of pedicellariae. Echinoderm Studies 1: 139–167.

    Google Scholar 

  • Carnevali MDC, Saita A (1985a) Muscle system organization in the echinoderms: II Microscopic anatomy and functional significance of the muscle ligament skeletal system in the arm of commatulids. J Morphol 185: 59–74.

    Google Scholar 

  • Carnevali MDC, Saita A (1985b) Muscle system organization in the echinoderms: Fine structure of the contractile apparatus of the arm flexor muscles of the commatulids. J Morphol 185: 75–87.

    Google Scholar 

  • Cavey MJ, Wood RL (1981) Specializations for excitation-contracting coupling in the podial retractor cells of the starfish Stylasterias forreri. Cell Tissue Res 218: 475–485.

    PubMed  CAS  Google Scholar 

  • Chaet AB (1966) Neurochemical control of gamete release in starfish. Biol Bull 130: 43–58.

    PubMed  CAS  Google Scholar 

  • Christo-Apostolides N (1882) Anatomie et développement des Ophiures. Arch Zool Exp Gen 10: 121–224.

    Google Scholar 

  • Cobb JLS (1967) The innervation of the ampulla in the starfish Astropecten. Proc R Soc B 168: 91–99.

    Google Scholar 

  • Cobb JLS (1968a) Observations on electrical activity within the retractor muscles of the lantern of Echinus esculentus using extracellular recording electrodes. Comp Biochem Physiol 24: 311–315.

    PubMed  CAS  Google Scholar 

  • Cobb JLS (1968b) The fine structure of the pedicellariae of Echinus esculentus. I. The innervation of the muscles. J R Microsc Soc 88: 211–221.

    Google Scholar 

  • Cobb JLS (1968c) The fine structure of the pedicellariae of Echinus esculentus. II. The sensory system. J R Microsc Soc 88: 223–233.

    Google Scholar 

  • Cobb JLS (1969a) The distribution of monoamines in the nervous system of echinoderms. Comp Biochem Physiol 28: 967–971.

    Google Scholar 

  • Cobb JLS (1969b) The innervation of the oesophagus of the sea-urchin Heliocidaris erythrogramma. Z Zellforsch 98: 323–332.

    PubMed  CAS  Google Scholar 

  • Cobb JLS (1970) The significance of the radial nerve cords in asteroids and echinoids. Z Zellforsch 108: 457–474.

    PubMed  CAS  Google Scholar 

  • Cobb JLS (1978) An ultrastructural study of the dermal papulae of the starfish, Asterias rubens. Cell Tissue Res 187: 515–523.

    PubMed  CAS  Google Scholar 

  • Cobb JLS (1982a) The anatomical basis for integratory mechanisms in echinoderms. In: Lawrence J (ed) International echinoderms conference, Tampa. Balkema, Rotterdam.

    Google Scholar 

  • Cobb JLS (1982b) Membrane physiology of echinoderms. Podesta RB (ed) Membrane physiology of echinoderms. Dekker, New York.

    Google Scholar 

  • Cobb JLS (1985a) Intracellular studies on the nervous system of an echinoderm. In: Keegan B, O’Connor B (eds) Proceedings of international echinoderms conference. Balkema, Rotterdam.

    Google Scholar 

  • Cobb JLS (1985b) The neurobiology of the ectoneural/hyponeural synaptic connection of an echinoderm. Biol Bull 168: 432–446.

    Google Scholar 

  • Cobb JLS (1985c) The motor innervation of the oral plate ligament in the brittlestar Ophiura ophiura. Cell Tissue Res 242: 685–688.

    Google Scholar 

  • Cobb JLS, Laverack MS (1966a) The lantern of Echinus esculentus, I. Gross anatomy and physiology. Proc R Soc B 164: 624–640.

    Google Scholar 

  • Cobb JLS, Laverack MS (1966b) The lantern of Echinus esculentus, II. The fine structure of the hyponeural tissue. Proc R Soc B 164: 641–650.

    Google Scholar 

  • Cobb JLS, Laverack MS (1966c) The lantern of Echinus esculentus, III. The fine structure of the lantern retractor muscle and its innervation. Proc R Soc B 164: 651–658.

    Google Scholar 

  • Cobb JLS, Laverack MS (1967) Neuromuscular systems in echinoderms. Symp Zool Soc Lond 20: 25–51.

    Google Scholar 

  • Cobb JLS, Moore A (1986) Comparative studies on receptor structure in the brittlestar Ophiura ophiura. J Neurocytol 15: 97–108.

    PubMed  CAS  Google Scholar 

  • Cobb JLS, Pentreath VW (1976) The identification of chemical synapses in echinoderm nervous systems. Thalass. Jugoslavica 12: 81–85.

    Google Scholar 

  • Cobb JLS, Pentreath VW (1977) Anatomical studies of simple invertebrate synapses using stage rotation electron microscopy and densitometry. Tissue Cell 9: 125–135.

    PubMed  CAS  Google Scholar 

  • Cobb JLS, Raymond AM (1979) The basiepithelial nerve plexus of the viscera and coelom of eleutherozoan Echinodermata. Cell Tissue Res 202: 155–163.

    PubMed  CAS  Google Scholar 

  • Cobb JLS, Sneddon E (1977) An ultrastructural study of the gills of Echinus esculentus. Cell Tissue Res 182: 265–274.

    PubMed  CAS  Google Scholar 

  • Cobb JLS, Stubbs T (1981) The giant neurone system in ophiuroids. I. The general morphology of the radial nerve cords and circumoral ring. Cell Tissue Res 219: 197–207.

    PubMed  CAS  Google Scholar 

  • Cobb JLS, Stubbs T (1982) The giant neurone system in ophiuroids. III. The detailed connections of the circumoral ring. Cell Tissue Res 226: 675–687.

    PubMed  CAS  Google Scholar 

  • Cottrell GA, Pentreath VW (1970) Localization of catecholamines in the nervous system of a starfish Asterias rubens. Comp Gen Pharmac 1: 73–81.

    CAS  Google Scholar 

  • Cuenot L (1948) Anatomie, Ethologie et Systématique des Echinoderms. In: Grosse P (ed) Traité de Zoologie. Masson et Cie, Paris.

    Google Scholar 

  • De Vos L (1985) Ultrastructure of the tubefeet of the ophiuroid Amphi-pholis squamata. Proc. 5th Int. Echinoderm Conference, Galway. Keegan B, O’Connor B (eds). Balkema, Rotterdam.

    Google Scholar 

  • Diab M, Gilly WM (1984) Mechanical properties and control of non-muscular catch in spine ligaments of the sea-urchin Strongylocentrotus. J Exp

    Google Scholar 

  • Dolder H (1972) Ultrastructural study of the smooth muscle in the tube- feet of echinoderms. J Submicr Cytol 4: 221–232.

    Google Scholar 

  • Doyle WL (1967) Vesiculated axons in haemal vessels of an holothurian, Cucumaria frondosa. Biol Bull 132: 329–336.

    Google Scholar 

  • Eakin RM (1963) Lines of evolution of photoreceptors. In: Mazia D (ed) General physiology of cell specialization. McGraw-Hill, New York.

    Google Scholar 

  • Eakin RM (1966) Evolution of photoreceptors. Cold Spring Harbor Symposia on Quantitative Biology. 30: 367–370.

    Google Scholar 

  • Eakin RM (1968) Evolution of photoreceptors. In: Dobzhansky T (ed) Evolutionary biology. Appleton-Crofts, New York.

    Google Scholar 

  • Eakin RM, Martin GG, Reed CT (1977) Evolutionary significance of fine structure of archiannelid eyes. Zoomorphol 88: 1–18.

    Google Scholar 

  • Eakin RM, Brandenburger JL (1979) Effects of light on ocelli of seastars. Zoormorphol 92: 191–200.

    Google Scholar 

  • Emerson CJ (1977) Larval development of the seastar with particular reference to the optic cushion. In: Scanning electronmicroscopy, vol II. Proceedings of workshop on SEM/STEM. IIT Research Institute, Chicago.

    Google Scholar 

  • Emson RH (1986) Bone idle - a recipe for success. In: Keegan B, O’Connor B (eds) Proceedings of 5th international echinoderms conference. Balkema, Rotterdam.

    Google Scholar 

  • Emson RH, Wilkie IC (1980) Fission and autonomy in echinoderms. Oceanogr Mar Biol Ann Rev 18: 155–250.

    Google Scholar 

  • Eylers JP (1982) Ion-dependent viscosity of holothurian body wall and its implications for the functional morphology of echinoderms. J Exp Biol 99: 1–8.

    CAS  Google Scholar 

  • Fankbonner PV (1978) Suspension feeding mechanisms of the armoured sea cucumber Psolus chitinoides. J Exp Mar Biol Ecol 31: 11–25.

    Google Scholar 

  • Florey E, Cahill MA (1977) Ultrastructure of sea urchin tubefeet. Cell Tissue Res 177: 195–214.

    PubMed  CAS  Google Scholar 

  • Florey E, Cahill MA (1980) Cholinergic motor control of sea urchin tubefeet: Evidence for chemical transmission without synapses. J Exp Biol 88: 281–292.

    PubMed  CAS  Google Scholar 

  • Florey E, Cahill MA (1982) Scanning electron microscopy of echinoid podia. Cell Tissue Res 224: 543–551.

    PubMed  CAS  Google Scholar 

  • Florey E, Cahill MA, Rathmayer M (1975) Excitatory actions of GABA and of acetylcholine in sea urchin tubefeet. Comp Biochem Physiol 51C: 5–12.

    Google Scholar 

  • Fontaine AR (1964) The integumentary secretions of the ophiuroid Ophiocomina nigra. J Mar Biol Ass UK 44: 145–162.

    Google Scholar 

  • Gardiner SL, Rieger RM (1980) Rudimentary cilia in muscle cells of annelids and echinoderms. Cell Tissue Res 213: 247–252.

    PubMed  CAS  Google Scholar 

  • Green CR, Bergquist PR, Bullivant S (1979) An anastomosing septate junction in endothelial cells of the phylum Echinodermata. J Ultrastruct Res 67: 72–80.

    Google Scholar 

  • Harris P, Shaw G (1984) Intermediate filaments, microtubules and microfilaments in epidermis of sea-urchin Strongylocentrotus tubefeet. Cell Tissue Res 236: 27–34.

    PubMed  CAS  Google Scholar 

  • Hehn G von (1970) Uber den Feinbau des hyponeuralen Nervensystems des Seesternes. Z Zellforsch 105: 137–154.

    Google Scholar 

  • Hendler G, Byrne M (1985) First description of a brittlestar photoreceptor system. Amer Zool 25: 143A.

    Google Scholar 

  • Hidaka M (1983) Effects of certain physico-chemical agents on the mechanical properties of the catch apparatus of the sea-urchin spine. J Exp Biol 103: 15–29.

    CAS  Google Scholar 

  • Hidaka M, Takahashi K (1983) Fine structure and mechanical properties of the catch apparatus of a sea urchin spine. J Exp Biol 103: 1–14.

    Google Scholar 

  • Hill RB (1970) Effects of some postulated neurohumors on rhythmicity of the isolated cloaca of a holothurian. Physiol Zool 43: 109–123.

    CAS  Google Scholar 

  • Hill RB (1983) Restoration of contractility by depolarizing agents and by calcium after caffeine treatment of holothurian muscle. Comp Biochem Physiol 75C: 5–15.

    CAS  Google Scholar 

  • Hill RB, Sanger JW, Chen C (1983) Close apposition of muscle cells in the longitudinal bands of the body wall of a holothurian Isostichopus. Cell Tissue Res 23: 467–473.

    Google Scholar 

  • Holland ND, Grimmer JC (1981) Fine structure of the cirri and a possible mechanism for their motility in stalkless crinoids. Cell Tissue Res 214: 207–217.

    PubMed  CAS  Google Scholar 

  • Huet M (1975) Le rôle du système nerveux au cours de la regénération du bras chez une étoile de mer: Asterina gibbosa. J Embryol Exp Morphol 33: 535–552.

    PubMed  CAS  Google Scholar 

  • Huet M (1979) Système nerveux et aptitude à la regénération du bras de l’étoile de mer Asterina gibbosa. Actes du Colloque européen sur les Echinodermes. Balkema, Rotterdam.

    Google Scholar 

  • Huet M, Franquinet R (1981) Histofluorescence study and biochemical assay of catecholamines during the course of arm tip regeneration in the starfish. Histochem 72: 149–154.

    CAS  Google Scholar 

  • Hyman LH (1955) The Invertebrates vol. IV Echinodermata. McGraw-Hill, New York.

    Google Scholar 

  • Jennings HS (1907) Behaviour of the starfish, Asterias forreri. Univ Calif Publ Zool 4: 53–185.

    Google Scholar 

  • Jickeli CF (1884) Vorlaufige Mitteilungen über den Bau der Echinoderm. Zool Anz 7: 346–370.

    Google Scholar 

  • Jordan H (1919) Uber ‘reflexarme’ Tiere. IV Die Holothurien Zool Jb (allg Zool) 36: 109–156.

    Google Scholar 

  • Kanatani H (1964) Spawning of the starfish: action of gamete shedding substance shed from radial nerves. Science 146: 1177–1179.

    PubMed  CAS  Google Scholar 

  • Kanatani H (1969) Mechanisms of starfish spawning: action of the neural substance on the isolated ovary. Gen Comp Endocrinol 2: 582–589.

    Google Scholar 

  • Kanatani H, Shirai H (1967) In vitro production of mitosis inducing substance by nerve extract in the ovary of the starfish. Nature 216: 284–286.

    CAS  Google Scholar 

  • Kanatani H, Ikegami S, Shirai H, Oide H, Tamura S (1971) Purification of gonad stimulating substance obtained from the radial nerve cord of a starfish. Devel Growth Differet 13: 151–164.

    CAS  Google Scholar 

  • Kawaguti S (1964) Electron microscopic structure of the podial wall of an echinoid with special reference to the nerve plexus and muscle. Biol J Okayama Univ 11: 41–52.

    Google Scholar 

  • Kawaguti S (1966) Electron microscopy on the body wall of a sea-cucumber with special attentions to its mucous cells. Biol J Okayama Univ 12: 35–45.

    Google Scholar 

  • Kawaguti S, Kamishima Y (1964) Electron microscopic study on the integument of an echinoid, Diadema setosum. Annotnes Zool Jpn 37: 147–152.

    Google Scholar 

  • Kinosita H (1941) Conduction of impulses in superficial nervous system of sea urchin. Jpn J Zool 9: 221–245.

    Google Scholar 

  • Kishimoto T, Kanatani H (1976) Cytoplasmic factor responsible for germinal vesicle breakdown and meiotic maturation in starfish oocytes. Nature 260: 321–332.

    PubMed  CAS  Google Scholar 

  • Kishimoto T, Cayer MI, Kanatani H (1982) Starfish oocyte maturation and reeuction of disulphide-bond on oocyte surface. Exp Cell Res 101: 104–111.

    Google Scholar 

  • Kobzar GT (1984) Muscle chemoreceptors in the holothurian Cucumaria japonica. Zh Evol Biokhim Fixiol 20: 419–422.

    CAS  Google Scholar 

  • Lewis JB (1968) The function of the sphaeridia of sea-urchins. Can J Zool 46: 1135–1138.

    Google Scholar 

  • Mackie GO, Spencer AN, Strathmann RR (1969) Electrial activity associated with ciliary reversal in echinoderm larvae. Nature 223: 1384–1385.

    Google Scholar 

  • Markel K, Roser U (1983) The spine tissues in the echinoid Eucidaris tribuloides. Zoomorphol 103: 25–41.

    Google Scholar 

  • Markel K, Roser U (1985) Comparative morphology of echinoderm calcified tissue: Histology and ultrastructure of ophiuroid scales. Zoomorphol 105: 197–207.

    Google Scholar 

  • Martinez JL (1977) Ultraestructura del tejido nervioso podial de Ophiothrix fragilis, Bol Ro Sox Espanola Hist Nat (biol) 75: 315–333.

    Google Scholar 

  • McClintock HB, Lawrence JM (1982) Photo response and associative learning in Luidia clathrata. Mar Behav Physiol 9: 13–21.

    Google Scholar 

  • McKenzie JD (1985) The tentacular ultrastructure of dendrochirote holothurians, A comparative SEM study. In: Keegan BF, O’Connor B (eds) Proceedings of 5th international echinoderms conference. Balkema, Rotterdam.

    Google Scholar 

  • Meijer L, Guerrier P (1984) Maturation and fertilization in starfish oocytes. Int rev Cytol 86: 130–192.

    Google Scholar 

  • Millott N (1966) Co-ordination of spine movements in echinoids. In: Boolootian RA (ed) Physiology of the Echinodermata. Interscience, New York.

    Google Scholar 

  • Millott N (1968) The dermal light sense. In: Carthy J, Newell G (eds) Invertebrate photoreceptors. Symp Zool Soc Lond Academic Press, London.

    Google Scholar 

  • Millott N (1975) The photosensitivity of echinoids. Adv Mar Biol 13: 1–52.

    Google Scholar 

  • Millott N, Coleman R (1969) The podial pit - a new structure in the echinoid Diadema antillarum. Z Zellforsch 95: 187–197.

    PubMed  CAS  Google Scholar 

  • Millott N, Okumura H (1968) The electrical actvity of the radial nerve cord in Diadema antillarum. J Exp Biol 48: 279–287.

    PubMed  CAS  Google Scholar 

  • Moore A, Cobb JLS (1985a) Neurophysiological studies on photic responses in Ophiura ophiura. Comp Biochem Physiol 80A: 11–16.

    Google Scholar 

  • Moore A, Cobb JLS (1985b) Neurophysiological studies on the detection of amino acids by Ophiura ophiura. Comp Biochem Physiol 82A: 395–399.

    CAS  Google Scholar 

  • Motokawa T (1981) The stiffness change of the holothurian dermis caused by chemical and electrical stimulation. Comp Biochem Physiol 70C: 41–48.

    CAS  Google Scholar 

  • Motokawa T (1982a) Fine structure of the dermis of the body wall of the sea cucumber Stichopus. Galaxea 1: 55–64.

    Google Scholar 

  • Motokawa T (1982b) Rapid change in the properties of echinoderm connective tissue caused by coelomic fluid. Comp Biochem Physiol 73C: 223–229.

    Google Scholar 

  • Motokawa T (1982c) Factors regulating the properties of holothurian dermis. J Exp Biol 99: 29–41.

    Google Scholar 

  • Motokawa T (1983) Mechanical properties and structure of the spine joint ligament of the sea-urchin. J Zool 201: 223–235.

    Google Scholar 

  • Motokawa T (1984a) Viscoelasticity of the holothurian body wall. 3 Exp Biol 109: 63–75.

    Google Scholar 

  • Motokawa T (1984b) Connective tissue catch in echinoderms. Biol Rev 59: 255–270.

    Google Scholar 

  • Okada Y, Iwata KS, Yanagihara M (1984) Synchronized rhythmic contractions among five gonadal lobes in the shedding sea-urchins: Coordinative function of the aboral nerve ring. Biol Bull 166: 228–236.

    Google Scholar 

  • Oldfield SC (1975). Surface fine structure of the globiferous pedicellariae of the regular echinoid, Psammechinus miliaris. Cell Tissue Res 162: 377–385.

    PubMed  CAS  Google Scholar 

  • Penn PE, Alexander CG (1980) Fine structure of the optic cushion in the asteroid Nepantia belcheri. Mar Biol 58: 251–256.

    Google Scholar 

  • Pentreath VW (1970) A study of neurotransmitters in the Asteroidea, Crinoidea and Ophiuroidea. M Sc thesis Univ St Andrews.

    Google Scholar 

  • Pentreath VW, Cobb JLS (1972) Neurobiology of Echinodermata. Biol Rev 47: 363–392.

    PubMed  CAS  Google Scholar 

  • Pentreath VW, Cobb JLS (1982) Echinodermata. In: Shelton G (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon, Oxford.

    Google Scholar 

  • Pentreath VW, Cottrell GA (1968) Acetylcholine and cholinesterase in the radial nerve cord of Asterias rubens. Comp Biochem Physiol 27: 775–785.

    PubMed  CAS  Google Scholar 

  • Pentreath VW, Cottrell GA (1971) ’Giant’ neurones and neurosecretion in the hyponeural tissue of Ophiothrix fragilis. J Exp Mar Biol Ecol 6: 249–264.

    Google Scholar 

  • Peters BH (1985) The innervation of spines in the sea-urchin Echinus esculentus. An electron microscope study. Cell Tissue Res 239: 219–228.

    Google Scholar 

  • Peters BH, Shelton GAB (1981) Electrical activity during a simple behaviour: spine-pointing in a sea-urchin. Comp Biochem Physiol 70A: 397–403.

    Google Scholar 

  • Podol’skii 0G (1972) Responses of the radial nerve cord of the starfish Asterias rubens to single and rhythmical electric shocks. Zhurnal Evolyutsionnoi Biokhimmi i Fiziologii 8: 517–522.

    Google Scholar 

  • Prosser CL (1954) Activation of a non-propagating muscle in Thyone. J Cell Comp Physiol 44: 247–254.

    CAS  Google Scholar 

  • Prosser CL, Mackie GO (1980) Contractions of holothurian muscle. I Comp Physiol 136: 103–112.

    Google Scholar 

  • Protas LL, Muske GA (1980) Effects of some transmitter substances on the tube foot muscles of the starfish Asterias amurensis. Gen Pharmacol 11: 113–118.

    PubMed  CAS  Google Scholar 

  • Reese ES (1966) The complex behaviour of echinoderms. In: Boolootian RA (ed) Physiology of Echinodermata. Wiley, New York.

    Google Scholar 

  • Reichensperger A (1908) Die Drusengebilde der Ophiuren. Z Wiss Zool 91: 304–350.

    Google Scholar 

  • Saita A, Carnevali MDC, Canonaco M (1982) Muscle system organization in the echinoderms. J Submicrosc Cytol 14: 291–304.

    Google Scholar 

  • Sandeman DC (1965) Electrical activity in the radial nerve cords and ampullae of sea-urchins. J Exp Biol 43: 247–256.

    Google Scholar 

  • Schoenmakers HJN, Colebrander PHJM, Peute J, Oordt PGWJ (1981) Jangoux M, Lawrence JL (eds) Anatomy of the ovaries of a starfish Asterias rubens. Cell Tissue Res 217: 577–597.

    Google Scholar 

  • Sloan NA, Campbell AC (1982) Perception of food. In: Jangoux M, Lawrence JL (eds) Echinoderm nutrition. Balkema, Rotterdam.

    Google Scholar 

  • Smith DS, Wainwright SA, Baker J, Cayer ML (1981) Structural features associated with movement and ‘catch’ of sea-urchin spines. Tissue Cell 13: 299–320.

    PubMed  CAS  Google Scholar 

  • Smith GN, Greenberg MJ (1973) Chemical control of the evisceration process in Thyone briareus. Biol Bull 144: 421–436.

    CAS  Google Scholar 

  • Smith JE (1937) On the nervous system of the starfish Marthasterias glacialis. Phil Trans R Soc B 227: 111–173.

    Google Scholar 

  • Smith JE (1945) THe role of the nervous system in some activities of starfishes. Biol Rev 20: 29–43.

    Google Scholar 

  • Smith JE (1950) The motor nervous system of the starfish, Astropecten irregularis with special reference to the innervation of the ampullae and tubefeet. Phil Trans R Soc B 234: 521–558.

    Google Scholar 

  • Smith JE (1965) Echinodermata. In: Bullock TH, Horridge GA (eds) Structure and function of the nervous systems of invertebrates, vol. II. Freeman and Co, San Francisco.

    Google Scholar 

  • Smith JE (1966) The form and functions of the nervous system. In: Boolootian RA (ed) Echinoderm physiology. Wiley, New York.

    Google Scholar 

  • Sousa Santos H (1966) The ultrastructure of the mucous granules from starfish tubefeet. J Ultrastruct Res 16: 41–51.

    Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a high fluorescent naphalimide tracer. Cell 14: 741–759.

    PubMed  CAS  Google Scholar 

  • Strathmann RR (1971) The feeding behaviour of planktotrophic echinoderm larvae: mechanisms, regulation and rates of suspension feeding. J Exp Mar Biol Ecol 6: 109–160.

    Google Scholar 

  • Stubbs T (1982) The neurophysiology of photosensitivity in ophiuroids. In: Lawrence JM (ed) Echinoderms: Proceedings of the International Conference, Tampa. Balkema, Rotterdam.

    Google Scholar 

  • Stubbs T, Cobb JLS (1981) The giant neurone system in ophiuroids, II. the hyponeural motor tracts. Cell Tissue Res 220: 373–385.

    PubMed  CAS  Google Scholar 

  • Stubbs T, Cobb JLS (1982) A new ciliary feeding structure in an echinoderm. Tissue Cell 14: 573–583.

    PubMed  CAS  Google Scholar 

  • Sugi H, Gomi S, Toride M, Emura A, Tsuchiya T, Takei N (1985) Mechanical activity in the lantern retractor muscle of a sea-urchin Anthocidaris crassipina. Comp Biochem Physiol 81A: 397–401.

    CAS  Google Scholar 

  • Suzuki S (1982) Physiological and cytochemical studies on activator calcium in contraction by smooth muscle of a sea cucumber, Isostichopus badionotus. Cell Tissue Res 222: 11–24.

    PubMed  CAS  Google Scholar 

  • Takahashi K (1964) Electrical responses to light stimuli in the isolated radial nerve of the sea-urchin, Diadema setosum. Nature 201: 1343–1344.

    PubMed  CAS  Google Scholar 

  • Takahashi K (1966) Muscle physiology. In: Boolootian RA (ed) Physiology of Echinodermata. Wiley, New York.

    Google Scholar 

  • Takahashi K (1967) The catch apparatus of the sea-urchin spine, II. Responses to stimuli. J Fac Sci Tokyo Univ, Sec IV 11: 109–120.

    Google Scholar 

  • Takasu N, Yoshida M (1983) Photic effects on photo sensory microvilli in the seastar Asterias amurensis. Zoomorphol 103: 135–148.

    Google Scholar 

  • Tsuchiya T, Amemiya S (1977) Studies on the radial muscle of an echinothuriid sea-urchin, Asthenosoma. I Mechanical responses to electrical stimulation and drugs. Comp Biochem Physiol 57C: 69–73.

    Google Scholar 

  • Tuft PJ, Gilly WF (1984) Ionic basis of action potential propagation along two classes of ’giant’ axons in the ophiuroid Ophiopteris papillosa. J Exp Biol 113: 337–350.

    CAS  Google Scholar 

  • Uexkull J von (1897) Uber reflexe bei den Seeigeln. Z Biol 37: 334–403.

    Google Scholar 

  • Uexkull J von (1926) Die Sperrmuskulatur der Holothurien. Pflugers Archiv 212: 1–14.

    Google Scholar 

  • Valentincic T (1979) Associative learning in the starfish Marthasterias glacialis, a simple model for the study of learning. Proceedings of European colloquium on Echinoderms. Balkema, Rotterdam.

    Google Scholar 

  • Valentincic T (1985) Behavioural study of chemoreception in the seastar Marthasterias glacialis; Structure-activity relationships of lactic acid, amino acids, and acetylcholine. J Comp Physiol A 157: 537–545.

    PubMed  CAS  Google Scholar 

  • Weber W, Grossmann M (1977) Ultrastructure of the basiepithelial plexus of the sea-urchin, Centrostephanus. Cell Tissue Res 175: 551–562.

    PubMed  CAS  Google Scholar 

  • Welsh JH (1966) Neurohumors and neurosecretion. In: Boolootian RA (ed) Physiology of Echinodermata. Wiley, New York.

    Google Scholar 

  • Whitfield PJ, Emson RH (1983) Presumptive ciliated receptors associated with the fibrillar glands of the spines of the echinoderm Amphipholis squamata. Cell Tissue Res 232: 609–624.

    PubMed  CAS  Google Scholar 

  • Wilkie IC (1978a) Arm autonomy in brittlestars (Echinodermata, Ophiuroidea) J Zool (Lond) 186: 311–330.

    Google Scholar 

  • Wilkie IC (1978b) Nervously mediated changes in the mechanical properties of a brittlestar ligament. Mar Behav Physiol 5: 289–306.

    Google Scholar 

  • Wilkie IC (1978c) Functional morphology of the autotomy plane of the brittlestar Ophiocomina nigra. Zoomorphol 91: 289–305.

    Google Scholar 

  • Wilkie IC (1979) The juxtaligamental cells of Ophiocomina nigra, and their possible role in mechano-effector function of collagenous tissue. Cell Tissue Res 197: 515–530.

    PubMed  CAS  Google Scholar 

  • Wilkie IC (1983) Nervously mediated change in the mechanical properties of the cirral ligaments of a crinoid. Mar Behav Physiol 9: 229–248.

    Google Scholar 

  • Wilkie IC (1984) Variable tensility in echinoderm collagenous tissues: a review. Mar Behav Physiol 11: 1–34.

    Google Scholar 

  • Wood RL, Cavey MJ (1981) Ultrastructure of the coelomic lining in the podium of the starfish Stylasterias forreri. Cell Tissue Res 218: 449–473.

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Yoshida M (1978) Fine structure of the ocelli of a synaptid holothurian, Opheodesoma spectabilis, and the effects of light and darkness. Zoormophol 90: 1–17.

    Google Scholar 

  • Yoshida M, Millott N (1959) Light sensitive nerve in an echinoid. Experientia 15: 13–14.

    Google Scholar 

  • Yoshida M, Ohtsuki H (1968) The phototactic behaviour of the starfish, Asterias amurensis. Biol Bull 134: 516–532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Cobb, J.L.S. (1987). Neurobiology of the Echinodermata. In: Ali, M.A. (eds) Nervous Systems in Invertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1955-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1955-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9084-1

  • Online ISBN: 978-1-4613-1955-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics