Skip to main content

Noncomplementation Phenomena and Their Bearing on Nondisjunctional Effects

  • Chapter
Aneuploidy

Part of the book series: Basic Life Sciences ((BLSC,volume 36))

Abstract

In the mouse, unbalanced gametes with major gains and/or losses of chromosomal material seem just as capable of forming a zygote as normal, fully balanced gametes. This is shown by the results of intercrossing genetically marked translocation heterozygotes, in which complementary unbalanced gametes usually fuse to form fully viable zygotes. However, there are some notable exceptions to this. Studies on a number of reciprocal translocations have shown that gametes with maternal duplication of particular chromosome regions may fail to complement those with a corresponding paternal deficiency, but produce lethal zygotes instead, whereas the reciprocal combination of a paternal duplication with a maternal deficiency produces fully viable offspring. For a particular distal region on chromosome 7 the reverse situation holds. More recent studies on genetic methods of detecting nondisjunction with Robertsonian translocations have revealed the same phenomenon. Mouse chromosomes affected include numbers 2, 6, 7, and 8. There is also defective complementation on chromosome 11 and related phenomena on chromosome 17. These findings help to explain why diploid embryos with 2 male or 2 female pronuclei fail to come to term and may be connected with genetic imprinting of gametes. It seems probable that the same phenomenon occurs in homologous regions of human chromosomes and may mean that the severity of a trisomic effect will depend sometimes on the parental source of the extra chromosome. The phenomenon also affects the efficiency of certain genetic tests for nondisjunction which depend on full complementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, S.C., M.A.H. Surani, and M.L. Norris (1984) Role of paternal and maternal genomes in mouse development. Nature 311: 374–376.

    Article  PubMed  CAS  Google Scholar 

  2. Beechey, C.V., and A.G. Searle (1979) Personal communication. Mouse News Letter 61: 37.

    Google Scholar 

  3. Beechey, C.V., and A.G. Searle (1984) Personal communication. Mouse News Letter 70: 78.

    Google Scholar 

  4. Beechey, C.V., and A.G. Searle (1984) Personal communication. Mouse News Letter 71: 28.

    Google Scholar 

  5. Beechey, C.V., and A.G. Searle (1985) Personal communication. Mouse News Letter 72: 103.

    Google Scholar 

  6. Bennett, D. (1975) The T-locus of the mouse. Cell 6: 441–454.

    Article  Google Scholar 

  7. Buckle, V.J., J.H. Edwards, E.P. Evans, J.A. Jonasson, M.F. Lyon, J. Peters, A.G. Searle, and N.S. Wedd (1984) Chromosome maps of man and mouse II. Clin. Genet. 26: 1–11.

    Article  PubMed  CAS  Google Scholar 

  8. Cattanach, B.M., and M. Kirk (1985) Differential activity of maternally and paternally derived chromosome regions in mice. Nature 315: 496–498.

    Article  PubMed  CAS  Google Scholar 

  9. Cattanach, B.M., I. Murray, and J.M. Tracey (1976) Personal communication. Mouse News Letter 54: 37–38.

    Google Scholar 

  10. Cattanach, B.M., D. Papworth, and M. Kirk (1984) Genetic tests for autosomal non-disjunction and chromosome loss in mice. Mut. Res. 126: 189–204.

    Article  CAS  Google Scholar 

  11. Ehling, U.H., J. Favor, J. Kratochvilova, and A. Neuhäuser-Klaus (1982) Dominant cataract mutations and specific-locus mutations in mice induced by radiation or ethylnitrosourea. Mut. Res. 92: 181–192.

    Article  CAS  Google Scholar 

  12. Eicher, E.M., and M.C. Green (1972) The T6 translocation in the mouse: Its use in trisomy mapping, centromere localization and cytological identification of linkage group III. Genetics 71: 621–632.

    PubMed  CAS  Google Scholar 

  13. Evans, E.P. (1976) Male sterility and double heterozygosity for Robertsonian translocations in the mouse. In Chromsomes Today, P.L. Pearson and K.R. Lewis, eds. John Wiley, New York, pp. 75–81.

    Google Scholar 

  14. Gropp, A., and H. Winking (1981) Robertsonian translocations: Cytology, meiosis, segregation patterns and biological consequences of heterozygosity. In Biology of the House Mouse, R.J. Berry, ed. Academic Press, London, pp. 141–181.

    Google Scholar 

  15. Gropp, A., U. Kolbus, and D. Giers (1975) Systematic approach to the study of trisomy in the mouse II. Cytogenet. Cell Genet. 14: 42–62.

    Article  PubMed  CAS  Google Scholar 

  16. Hassold, T., and P.A. Jacobs (1984) Trisomy in man. Ann. Rev. Genet. 18: 69–97.

    Article  PubMed  CAS  Google Scholar 

  17. Hassold, T., D. Chiu, and J.A. Yamane (1984) Parental origin of autosomal trisomies. Ann. Hum. Genet. 48: 129–144.

    Article  PubMed  CAS  Google Scholar 

  18. Jacobs, P.A. (1982) Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann. Hum. Genet. 46: 223–231.

    Article  PubMed  CAS  Google Scholar 

  19. Johnson, D.R. (1974) Hairpintail: A case of post-reductional gene action in the mouse egg? Genetics 76: 795–805.

    PubMed  CAS  Google Scholar 

  20. Johnson, D.R. (1975) Further observations on the hairpintail (T hp) mutation in the mouse. Genet. Res., Camb. 24: 207–213.

    Article  Google Scholar 

  21. Kaufman, M.H., S.C. Barton, and M.A.H. Surani (1977) Normal post-implantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature 265: 53–55.

    Article  PubMed  CAS  Google Scholar 

  22. Lyon, M.F. (1983) The use of Robertsonian translocations for studies of non-disjunction. In Radiation-induced Chromosome Damage in Man, T. Ishihara and M.S. Sasaki, eds. A.R. Liss, New York, pp. 327–346.

    Google Scholar 

  23. Lyon, M.F., and P.H. Glenister (1977) Factors affecting the observed number of young resulting from adjacent-2 disjunction in mice carrying a translocation. Genet. Res., Camb. 29: 83–92.

    Article  CAS  Google Scholar 

  24. Lyon, M.F., and S. Rastan (1984) Parental source of chromosome imprinting and its relevance for X chromosome inactivation. Differentiation 26: 63–67.

    Article  PubMed  CAS  Google Scholar 

  25. Lyon, M.F., H.C. Ward, and G.M. Simpson (1976) A genetic method for measuring non-disjunction in mice with Robertsonian translocations. Genet. Res. 26: 283–295.

    Article  Google Scholar 

  26. Markert, C.L. (1982) Parthenogenesis, homozygosity and cloning in mammals. J. Hered. 73: 390–397.

    PubMed  CAS  Google Scholar 

  27. McGrath, J., and D. Solter (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37: 179–183.

    Article  PubMed  CAS  Google Scholar 

  28. McGrath, J., and D. Solter (1984) Maternal T hp lethality in the mouse is a nuclear, not cytoplasmic, defect. Nature 308: 550–551.

    Article  PubMed  CAS  Google Scholar 

  29. Nadeau, J.H., and B.A. Taylor (1984) Lengths of chromosomal segments conserved since divergence of man and mouse. Proc. Natl. Acad. Sci., USA 81: 814–818.

    Article  PubMed  CAS  Google Scholar 

  30. Phillips, R.J.S. (1976) Personal communication. Mouse News Letter 55: 15.

    Google Scholar 

  31. Russell, W.L. (1951) X-ray-induced mutations in mice. Cold Spring Harbor Symp. Quant. Biol. 16: 327–336.

    Article  PubMed  CAS  Google Scholar 

  32. Russell, L.B., and W.L. Russell (1960) Genetic analysis of induced deletions and of spontaneous non-disjunction involving chromosome 2 of the mouse. J. Cell. Comp. Physiol. 56 (suppl. 1): 169–188.

    Article  PubMed  Google Scholar 

  33. Russell, L.B., W.L. Russell, R.A. Popp, C. Vaughan, and K.B. Jacobson (1976) Radiation induced mutations at mouse haemoglobin loci. Proc. Natl. Acad. Sci., USA 73: 2843–2846.

    Article  PubMed  CAS  Google Scholar 

  34. Searle, A.G. (1974) Mutation induction in mice. Adv. Radiat. Biol. 4: 131–207.

    Google Scholar 

  35. Searle, A.G. (1981) Numerical variants and structural rearrangements. In Genetic Variants and Strains of the Laboratory Mouse, M.C. Green, ed. G. Fischer, Stuttgart, pp. 324–357.

    Google Scholar 

  36. Searle, A.G., and C.V. Beechey (1978) Complementation studies with mouse translocations. Cytogenet. Cell Genet. 20: 282–303.

    Article  PubMed  CAS  Google Scholar 

  37. Searle, A.G., and C.V. Beechey (1982) The use of Robertsonian translocations in the mouse for studies on non-disjunction. Cytogenet. Cell Genet. 33: 81–87.

    Article  PubMed  CAS  Google Scholar 

  38. Searle, A.G., C.E. Ford, and C.V. Beechey (1971) Meiotic disjunction in mouse translocations and the determination of centromere position. Genet. Res. 18: 215–235.

    Article  PubMed  CAS  Google Scholar 

  39. Snell, G.D. (1946) An analysis of translocations in the mouse. Genetics 31: 157–180.

    Google Scholar 

  40. Surani, M.A.H., and S.C. Barton (1983) Development of gynogenetic eggs in the mouse: Implications for parthenogenetic embryos. Science 222: 1034–1036.

    Article  PubMed  CAS  Google Scholar 

  41. Surani, M.A.H., S.C. Barton, and M.L. Norris (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308: 548–550.

    Article  PubMed  CAS  Google Scholar 

  42. Winking, H., and L.M. Silver (1984) Characterization of a recombinant mouse t haplotype that expresses a dominant lethal maternal effect. Genetics 108: 1013–1020.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Searle, A.G., Beechey, C.V. (1985). Noncomplementation Phenomena and Their Bearing on Nondisjunctional Effects. In: Dellarco, V.L., et al. Aneuploidy. Basic Life Sciences, vol 36. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2127-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2127-9_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9257-9

  • Online ISBN: 978-1-4613-2127-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics